--- license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_keras_callback model-index: - name: Kiran2004/Roberta_QCA_Squad results: [] datasets: - rajpurkar/squad metrics: - accuracy - precision - recall - f1 --- ## Model description This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an [squad](https://huggingface.co/datasets/rajpurkar/squad) dataset.It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering for 6 Epochs. It achieves the following results after training: - Train Loss: 0.1434 - Validation Loss: 0.4821 ## Model Training - **Training Dataset**: [squad](https://huggingface.co/datasets/rajpurkar/squad) - **Pretrained Model**: [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) ## Evaluation The model's performance can be evaluated using various metrics such as Accuracy, Recall, Precision, F1 score. - Accuracy: 0.9100 - Precision: 0.9099 - Recall: 0.9099 - F1 Score: 0.9603 ## Example Usage ```python from transformers import pipeline model_name = "Kiran2004/Roberta_QCA_Squad" question_answerer = pipeline("question-answering", model = model_name) question = "How many programming languages does BLOOM support?" context = "BLOOM has 176 billion parameters and can generate text in 46 languages natural languages and 13 programming languages." question_answerer(question=question, context=context) ``` ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5774 | 0.4305 | 0 | | 0.3089 | 0.4597 | 1 | | 0.2268 | 0.4541 | 2 | | 0.1852 | 0.4718 | 3 | | 0.1618 | 0.4821 | 4 | | 0.1434 | 0.4821 | 5 | ### Framework versions - Transformers 4.38.2 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2