import os import torch def prune_it(p, keep_only_ema=True): print(f"prunin' in path: {p}") size_initial = os.path.getsize(p) nsd = dict() sd = torch.load(p, map_location="cpu") print(sd.keys()) #for k in sd.keys(): # if k != "optimizer_states": # nsd[k] = sd[k] #else: # print(f"removing optimizer states for path {p}") if "global_step" in sd: print(f"This is global step {sd['global_step']}.") if keep_only_ema: if "state_dict" in sd: sd = sd["state_dict"] # infer ema keys ema_keys = {k: "model_ema." + k[6:].replace(".", ".") for k in sd.keys() if k.startswith("model.")} new_sd = {"state_dict": {}} for k in sd: ema_k = "___" try: ema_k = "model_ema." + k[6:].replace(".", "") except: pass if ema_k in sd: new_sd[k] = sd[ema_k]#.half() print("ema: " + ema_k + " > " + k) elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]: new_sd[k] = sd[k]#.half() print(k) else: print("skipped: " + k) if k in new_sd and isinstance(new_sd[k], torch.FloatTensor): new_sd[k] = new_sd[k]#.half() #assert len(new_sd) == len(sd) - len(ema_keys) nsd["state_dict"] = new_sd else: sd = nsd['state_dict'].copy() new_sd = dict() for k in sd: new_sd[k] = sd[k]#.half() nsd['state_dict'] = new_sd fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt" print(f"saving pruned checkpoint at: {fn}") torch.save(nsd, fn) newsize = os.path.getsize(fn) MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \ f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states" if keep_only_ema: MSG += " and non-EMA weights" print(MSG) if __name__ == "__main__": #prune_it('anime700k-64bs-0.1ucg-penultimate-1epoch-clip-ema-continue-76000.pt') import sys prune_it(sys.argv[1])