--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # cnn_dailymail_6789_2000_1000_v1_train This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/cnn_dailymail_6789_2000_1000_v1_train") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 3 * Number of training documents: 2000
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | second - rider - minute - roma - teammate | 268 | -1_second_rider_minute_roma | | 0 | said - one - year - would - people | 1 | 0_said_one_year_would | | 1 | player - game - world - first - club | 1731 | 1_player_game_world_first |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.15.0 * Python: 3.10.12