--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ViT_Flower102_4 results: [] --- # ViT_Flower102_4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0651 - Accuracy: 0.9873 - Precision: 0.9873 - Recall: 0.9873 - F1: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.5217 | 0.22 | 100 | 2.8392 | 0.8363 | 0.8363 | 0.8363 | 0.8363 | | 1.2157 | 0.45 | 200 | 1.5467 | 0.9304 | 0.9304 | 0.9304 | 0.9304 | | 0.5702 | 0.67 | 300 | 0.7642 | 0.9598 | 0.9598 | 0.9598 | 0.9598 | | 0.367 | 0.89 | 400 | 0.4966 | 0.9637 | 0.9637 | 0.9637 | 0.9637 | | 0.1299 | 1.11 | 500 | 0.2458 | 0.9784 | 0.9784 | 0.9784 | 0.9784 | | 0.1142 | 1.34 | 600 | 0.1678 | 0.9833 | 0.9833 | 0.9833 | 0.9833 | | 0.043 | 1.56 | 700 | 0.1746 | 0.9706 | 0.9706 | 0.9706 | 0.9706 | | 0.0683 | 1.78 | 800 | 0.1554 | 0.9745 | 0.9745 | 0.9745 | 0.9745 | | 0.0364 | 2.0 | 900 | 0.1132 | 0.9843 | 0.9843 | 0.9843 | 0.9843 | | 0.019 | 2.23 | 1000 | 0.0939 | 0.9843 | 0.9843 | 0.9843 | 0.9843 | | 0.0535 | 2.45 | 1100 | 0.1033 | 0.9833 | 0.9833 | 0.9833 | 0.9833 | | 0.0164 | 2.67 | 1200 | 0.0698 | 0.9902 | 0.9902 | 0.9902 | 0.9902 | | 0.1128 | 2.9 | 1300 | 0.0810 | 0.9853 | 0.9853 | 0.9853 | 0.9853 | | 0.0127 | 3.12 | 1400 | 0.0725 | 0.9873 | 0.9873 | 0.9873 | 0.9873 | | 0.0112 | 3.34 | 1500 | 0.0702 | 0.9902 | 0.9902 | 0.9902 | 0.9902 | | 0.0383 | 3.56 | 1600 | 0.0860 | 0.9843 | 0.9843 | 0.9843 | 0.9843 | | 0.0091 | 3.79 | 1700 | 0.0750 | 0.9843 | 0.9843 | 0.9843 | 0.9843 | | 0.0079 | 4.01 | 1800 | 0.0674 | 0.9882 | 0.9882 | 0.9882 | 0.9882 | | 0.0083 | 4.23 | 1900 | 0.0659 | 0.9873 | 0.9873 | 0.9873 | 0.9873 | | 0.0078 | 4.45 | 2000 | 0.0652 | 0.9882 | 0.9882 | 0.9882 | 0.9882 | | 0.0073 | 4.68 | 2100 | 0.0652 | 0.9873 | 0.9873 | 0.9873 | 0.9873 | | 0.0076 | 4.9 | 2200 | 0.0651 | 0.9873 | 0.9873 | 0.9873 | 0.9873 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2