--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_breastmnist_std_15 results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: breastmnist split: validation args: breastmnist metrics: - name: Accuracy type: accuracy value: 0.7884615384615384 - name: F1 type: f1 value: 0.6551215917464996 --- # ViT_breastmnist_std_15 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4504 - Accuracy: 0.7885 - F1: 0.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.4628 | 0.2597 | 20 | 0.4724 | 0.7821 | 0.5951 | | 0.3645 | 0.5195 | 40 | 0.3994 | 0.8590 | 0.7786 | | 0.2744 | 0.7792 | 60 | 0.4429 | 0.8462 | 0.7524 | | 0.3004 | 1.0390 | 80 | 0.3893 | 0.8590 | 0.7886 | | 0.2153 | 1.2987 | 100 | 0.4120 | 0.8462 | 0.7641 | | 0.1593 | 1.5584 | 120 | 0.4542 | 0.8590 | 0.7786 | | 0.1189 | 1.8182 | 140 | 0.3911 | 0.8718 | 0.8120 | | 0.1139 | 2.0779 | 160 | 0.4154 | 0.8590 | 0.7886 | | 0.0707 | 2.3377 | 180 | 0.4517 | 0.8590 | 0.7886 | | 0.0482 | 2.5974 | 200 | 0.4824 | 0.8718 | 0.8034 | | 0.0499 | 2.8571 | 220 | 0.4408 | 0.8462 | 0.7743 | | 0.0195 | 3.1169 | 240 | 0.4874 | 0.8462 | 0.7743 | | 0.0146 | 3.3766 | 260 | 0.4723 | 0.8718 | 0.8120 | | 0.0141 | 3.6364 | 280 | 0.5117 | 0.8590 | 0.7886 | | 0.017 | 3.8961 | 300 | 0.6032 | 0.8462 | 0.7743 | | 0.0052 | 4.1558 | 320 | 0.5948 | 0.8590 | 0.7886 | | 0.005 | 4.4156 | 340 | 0.5897 | 0.8590 | 0.7886 | | 0.0039 | 4.6753 | 360 | 0.5729 | 0.8462 | 0.7743 | | 0.0088 | 4.9351 | 380 | 0.5623 | 0.8462 | 0.7743 | | 0.0104 | 5.1948 | 400 | 0.4814 | 0.8718 | 0.8194 | | 0.0012 | 5.4545 | 420 | 0.5039 | 0.8718 | 0.8194 | | 0.001 | 5.7143 | 440 | 0.5268 | 0.8718 | 0.8120 | | 0.001 | 5.9740 | 460 | 0.5435 | 0.8590 | 0.7886 | | 0.0007 | 6.2338 | 480 | 0.5435 | 0.8462 | 0.7743 | | 0.0007 | 6.4935 | 500 | 0.5373 | 0.8590 | 0.7974 | | 0.0006 | 6.7532 | 520 | 0.5745 | 0.8590 | 0.7886 | | 0.0007 | 7.0130 | 540 | 0.5674 | 0.8462 | 0.7743 | | 0.0004 | 7.2727 | 560 | 0.5826 | 0.8462 | 0.7743 | | 0.0006 | 7.5325 | 580 | 0.5663 | 0.8462 | 0.7743 | | 0.0006 | 7.7922 | 600 | 0.5751 | 0.8462 | 0.7743 | | 0.0005 | 8.0519 | 620 | 0.5851 | 0.8462 | 0.7743 | | 0.0004 | 8.3117 | 640 | 0.5782 | 0.8462 | 0.7743 | | 0.0004 | 8.5714 | 660 | 0.5875 | 0.8462 | 0.7743 | | 0.0004 | 8.8312 | 680 | 0.5939 | 0.8462 | 0.7743 | | 0.0004 | 9.0909 | 700 | 0.5934 | 0.8462 | 0.7743 | | 0.0004 | 9.3506 | 720 | 0.5925 | 0.8462 | 0.7743 | | 0.0004 | 9.6104 | 740 | 0.5930 | 0.8462 | 0.7743 | | 0.0004 | 9.8701 | 760 | 0.5945 | 0.8462 | 0.7743 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0