--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1275 - Precision: 0.9333 - Recall: 0.9402 - F1: 0.9367 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1686 | 1.0 | 477 | 0.0937 | 0.8103 | 0.8792 | 0.8433 | 0.9681 | | 0.0648 | 2.0 | 954 | 0.0895 | 0.8268 | 0.8916 | 0.8580 | 0.9706 | | 0.0396 | 3.0 | 1431 | 0.0925 | 0.8418 | 0.8954 | 0.8678 | 0.9722 | | 0.0264 | 4.0 | 1908 | 0.1052 | 0.8469 | 0.8929 | 0.8693 | 0.9722 | | 0.0199 | 5.0 | 2385 | 0.1211 | 0.8441 | 0.8964 | 0.8695 | 0.9725 | | 0.0091 | 6.0 | 2862 | 0.1105 | 0.9308 | 0.9384 | 0.9346 | 0.9813 | | 0.0042 | 7.0 | 3339 | 0.1156 | 0.9329 | 0.9391 | 0.9360 | 0.9816 | | 0.003 | 8.0 | 3816 | 0.1230 | 0.9316 | 0.9383 | 0.9350 | 0.9814 | | 0.0017 | 9.0 | 4293 | 0.1257 | 0.9301 | 0.9393 | 0.9347 | 0.9815 | | 0.0013 | 10.0 | 4770 | 0.1275 | 0.9333 | 0.9402 | 0.9367 | 0.9817 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1