--- base_model: openai/whisper-large-v3 datasets: - google/fleurs library_name: transformers license: apache-2.0 metrics: - wer model-index: - name: whisper-large-v3-Telugu-Version1 results: [] language: - te pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-Telugu-Version1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1610 - Wer: 48.7241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.2337 | 6.1920 | 2000 | 0.2242 | 61.4168 | | 0.1902 | 12.3839 | 4000 | 0.1904 | 55.2632 | | 0.169 | 18.5759 | 6000 | 0.1778 | 52.8575 | | 0.1647 | 24.7678 | 8000 | 0.1710 | 51.6746 | | 0.1523 | 30.9598 | 10000 | 0.1669 | 50.3589 | | 0.1383 | 37.1517 | 12000 | 0.1642 | 49.9468 | | 0.1561 | 43.3437 | 14000 | 0.1628 | 49.3089 | | 0.1475 | 49.5356 | 16000 | 0.1616 | 48.9234 | | 0.1437 | 55.7276 | 18000 | 0.1610 | 48.7241 | | 0.1395 | 61.9195 | 20000 | 0.1610 | 48.7241 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1