--- tags: - conversational --- ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt") output_sequences = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=100, # Adjusted max_length temperature=0.3, top_k=40, top_p=0.85, num_return_sequences=1, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id, early_stopping=True, do_sample=True, use_cache=True, ) full_generated_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True) bot_response_start = full_generated_text.find('[Bot]') + len('[Bot]') bot_response = full_generated_text[bot_response_start:] last_period_index = bot_response.rfind('.') if last_period_index != -1: bot_response = bot_response[:last_period_index + 1] return bot_response.strip() model_name = 'KhantKyaw/Chat_GPT-2' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) response = generate_response(user_input) print("Chatbot:", response) ```