--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-03 results: [] --- # english-filipino-wav2vec2-l-xls-r-test-03 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Wer: 0.3676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3398 | 2.09 | 400 | 0.5733 | 0.6166 | | 0.5087 | 4.19 | 800 | 0.5210 | 0.4775 | | 0.344 | 6.28 | 1200 | 0.5284 | 0.5008 | | 0.2745 | 8.38 | 1600 | 0.5195 | 0.4457 | | 0.2153 | 10.47 | 2000 | 0.5820 | 0.4668 | | 0.1797 | 12.57 | 2400 | 0.4915 | 0.4432 | | 0.1513 | 14.66 | 2800 | 0.6316 | 0.4513 | | 0.1355 | 16.75 | 3200 | 0.5328 | 0.4070 | | 0.1204 | 18.85 | 3600 | 0.5800 | 0.4405 | | 0.1062 | 20.94 | 4000 | 0.6887 | 0.4532 | | 0.0931 | 23.04 | 4400 | 0.6184 | 0.4152 | | 0.0821 | 25.13 | 4800 | 0.7413 | 0.4461 | | 0.0733 | 27.23 | 5200 | 0.7160 | 0.4549 | | 0.071 | 29.32 | 5600 | 0.7001 | 0.4048 | | 0.0577 | 31.41 | 6000 | 0.7839 | 0.4309 | | 0.051 | 33.51 | 6400 | 0.7764 | 0.4128 | | 0.046 | 35.6 | 6800 | 0.6753 | 0.3875 | | 0.0384 | 37.7 | 7200 | 0.7106 | 0.3856 | | 0.0359 | 39.79 | 7600 | 0.6932 | 0.3676 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3