from transformers import PretrainedConfig, AutoConfig class BERTMultiGATAttentionConfig(PretrainedConfig): model_type = "deberta_semantic_similarity" def __init__( self, transformer_model='microsoft/deberta-v3-base', hidden_size=768, num_heads=8, dropout=0.07, gnn_input_dim=768, gnn_hidden_dim=768, **kwargs ): super().__init__(**kwargs) self.transformer_model = transformer_model self.hidden_size = hidden_size self.num_heads = num_heads self.dropout = dropout self.gnn_input_dim = gnn_input_dim self.gnn_hidden_dim = gnn_hidden_dim AutoConfig.register("deberta_semantic_similarity", BERTMultiGATAttentionConfig)