bert-finetuned-ner / README.md
Kevin201217's picture
Training complete
6c071ac verified
|
raw
history blame
1.7 kB
---
license: mit
base_model: microsoft/biogpt
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0922
- Precision: 0.6758
- Recall: 0.7814
- F1: 0.7248
- Accuracy: 0.9791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1026 | 1.0 | 679 | 0.0663 | 0.6242 | 0.7853 | 0.6956 | 0.9772 |
| 0.0487 | 2.0 | 1358 | 0.0710 | 0.6842 | 0.8094 | 0.7416 | 0.9789 |
| 0.014 | 3.0 | 2037 | 0.0922 | 0.6758 | 0.7814 | 0.7248 | 0.9791 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2