--- language: - da pipeline_tag: text-generation widget: - text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n" --- # What is this? A fine-tuned GPT-2 model (medium version, ~354.8 M parameters) for generating responses to customer reviews in Danish. # How to use The model is based on the [gpt2-medium-danish model](https://huggingface.co/KennethTM/gpt2-medium-danish) and performs better than the smaller version ([gpt2-small-danish-review-response ](https://huggingface.co/KennethTM/gpt2-small-danish-review-response)). Supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used to train (see the example below). Test the model using the pipeline from the [🤗 Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import pipeline generator = pipeline("text-generation", model = "KennethTM/gpt2-medium-danish-review-response") def prompt_template(user, review): return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n" prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.") text = generator(prompt) print(text[0]["generated_text"]) ``` Or load it using the Auto* classes: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-medium-danish-review-response") model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-medium-danish-review-response") ```