--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: mit datasets: - squad - eli5 - sentence-transformers/embedding-training-data language: - da library_name: sentence-transformers --- *New version available, trained on more data and otherwise identical [KennethTM/MiniLM-L6-danish-encoder-v2](https://huggingface.co/KennethTM/MiniLM-L6-danish-encoder-v2)* # MiniLM-L6-danish-encoder This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search. The maximum sequence length is 512 tokens. The model was not pre-trained from scratch but adapted from the English version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish). Trained on ELI5 and SQUAD data machine translated from English to Danish. # Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."] model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder') embeddings = model.encode(sentences) print(embeddings) ``` # Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder') model = AutoModel.from_pretrained('KennethTM/MiniLM-L6-danish-encoder') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ```