--- library_name: transformers base_model: Kendamarron/Qwen2.5-4x0.5B-cpt tags: - axolotl - generated_from_trainer datasets: - Kendamarron/jimba-instruction-all - Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought - Aratako/Synthetic-JP-EN-Coding-Dataset-801k - llm-jp/magpie-sft-v1.0 model-index: - name: Qwen2.5-4x0.5B-sft-v1 results: [] license: apache-2.0 language: - ja --- ## Qwen2.5-1.75B-A1.1B-Instruct-ja Qwen2.5-0.5B系のモデルを組み合わせて作ったMoEです。 ## Details https://zenn.dev/kendama/articles/68ae234e9371ac [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # 学習のベースモデルに関する設定 base_model: Kendamarron/Qwen2.5-4x0.5B-cpt model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # 学習後のモデルのHFへのアップロードに関する設定 hub_model_id: Kendamarron/Qwen2.5-4x0.5B-sft-v1 hub_strategy: "end" push_dataset_to_hub: hf_use_auth_token: true # Liger Kernelの設定(学習の軽量・高速化) plugins: - axolotl.integrations.liger.LigerPlugin liger_cross_entropy: false liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true # 量子化に関する設定 load_in_8bit: false load_in_4bit: false # SFTに利用するchat templateの設定 chat_template: qwen_25 # 学習データセットの前処理に関する設定 datasets: - path: Kendamarron/jimba-instruction-all split: train type: chat_template field_messages: conversations message_field_role: role message_field_content: content - path: Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought split: train type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k split: train[0:10000] type: chat_template field_messages: messages message_field_role: role message_field_content: content - path: llm-jp/magpie-sft-v1.0 split: train[0:30000] type: chat_template field_messages: conversations message_field_role: role message_field_content: content # データセット、モデルの出力先に関する設定 shuffle_merged_datasets: true dataset_prepared_path: /workspace/data/sft-data output_dir: /workspace/data/models/Qwen2.5-4x0.5B-SFT # valid datasetのサイズ val_set_size: 0.005 # wandbに関する設定 wandb_project: Qwen2.5-4x0.5B wandb_entity: kendamarron wandb_watch: wandb_name: sft-v1 wandb_log_model: # 学習に関する様々な設定 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine cosine_min_lr_ratio: 0.1 learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true saves_per_epoch: 1 warmup_steps: 60 eval_steps: 100 eval_batch_size: 1 eval_table_size: eval_max_new_tokens: debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" pad_token: "<|end_of_text|>" tokens: - "<|im_start|>" - "<|im_end|>" ```

# Qwen2.5-4x0.5B-sft-v1 This model is a fine-tuned version of [Kendamarron/Qwen2.5-4x0.5B-cpt](https://huggingface.co/Kendamarron/Qwen2.5-4x0.5B-cpt) on the Kendamarron/jimba-instruction-all, the Kendamarron/OpenMathInstruct-2-ja-CoT-only_thought, the Aratako/Synthetic-JP-EN-Coding-Dataset-801k and the llm-jp/magpie-sft-v1.0 datasets. It achieves the following results on the evaluation set: - Loss: 1.0085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 60 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3068 | 0.0033 | 1 | 1.3071 | | 1.1087 | 0.3309 | 100 | 1.0806 | | 1.1393 | 0.6617 | 200 | 1.0488 | | 1.0569 | 0.9926 | 300 | 1.0286 | | 0.9902 | 1.3209 | 400 | 1.0215 | | 0.9933 | 1.6518 | 500 | 1.0133 | | 0.9706 | 1.9826 | 600 | 1.0085 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0