import torch import torch.nn as nn import math '''https://github.com/blandocs/Tag2Pix/blob/master/model/pretrained.py''' # Pretrained version class Selayer(nn.Module): def __init__(self, inplanes): super(Selayer, self).__init__() self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(inplanes, inplanes // 16, kernel_size=1, stride=1) self.conv2 = nn.Conv2d(inplanes // 16, inplanes, kernel_size=1, stride=1) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) out = self.sigmoid(out) return x * out class BottleneckX_Origin(nn.Module): expansion = 4 def __init__(self, inplanes, planes, cardinality, stride=1, downsample=None): super(BottleneckX_Origin, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes * 2) self.conv2 = nn.Conv2d(planes * 2, planes * 2, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm2d(planes * 2) self.conv3 = nn.Conv2d(planes * 2, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.selayer = Selayer(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.selayer(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEResNeXt_extractor(nn.Module): def __init__(self, block, layers, input_channels=3, cardinality=32): super(SEResNeXt_extractor, self).__init__() self.cardinality = cardinality self.inplanes = 64 self.input_channels = input_channels self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, self.cardinality, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, self.cardinality)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) return x def get_seresnext_extractor(): return SEResNeXt_extractor(BottleneckX_Origin, [3, 4, 6, 3], 1)