--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-1024 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.7935375363131338 - name: F1 type: f1 value: 0.7782286513484494 - name: Recall type: recall value: 0.7935375363131338 - name: Precision type: precision value: 0.7838508007361574 --- # distilroberta-base-wandb-week-3-complaints-classifier-1024 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.6228 - Accuracy: 0.7935 - F1: 0.7782 - Recall: 0.7935 - Precision: 0.7839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00019154628432502008 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.8624 | 0.61 | 1500 | 0.8468 | 0.7521 | 0.7215 | 0.7521 | 0.7083 | | 0.743 | 1.22 | 3000 | 0.7668 | 0.7651 | 0.7417 | 0.7651 | 0.7383 | | 0.6135 | 1.83 | 4500 | 0.6228 | 0.7935 | 0.7782 | 0.7935 | 0.7839 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1