metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-euskera-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: eu
split: test
args: eu
metrics:
- name: Wer
type: wer
value: 0.3909212143398792
wav2vec2-large-xls-r-300m-euskera-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.2684
- Wer: 0.3909
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.7119 | 0.85 | 400 | 2.8503 | 1.0 |
2.2906 | 1.7 | 800 | 0.6839 | 0.8005 |
0.5099 | 2.56 | 1200 | 0.3751 | 0.5345 |
0.3403 | 3.41 | 1600 | 0.3170 | 0.4379 |
0.2608 | 4.26 | 2000 | 0.2684 | 0.3909 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3