--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-lg-cv-10hr-v3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/o0fw7ke6) # wav2vec2-large-xls-r-300m-lg-cv-10hr-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6399 - Wer: 0.5490 - Cer: 0.1258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9948 | 95 | 5.7544 | 1.0 | 1.0 | | 11.4782 | 2.0 | 191 | 3.4141 | 1.0 | 1.0 | | 3.8877 | 2.9948 | 286 | 2.9705 | 1.0 | 1.0 | | 3.0666 | 4.0 | 382 | 2.8116 | 1.0 | 1.0 | | 2.8721 | 4.9948 | 477 | 0.9460 | 0.9262 | 0.2276 | | 1.6147 | 6.0 | 573 | 0.6163 | 0.8134 | 0.1855 | | 0.6412 | 6.9948 | 668 | 0.4726 | 0.6816 | 0.1425 | | 0.4424 | 8.0 | 764 | 0.4475 | 0.6449 | 0.1306 | | 0.3408 | 8.9948 | 859 | 0.4403 | 0.6429 | 0.1310 | | 0.2786 | 10.0 | 955 | 0.4409 | 0.6139 | 0.1252 | | 0.24 | 10.9948 | 1050 | 0.4206 | 0.5878 | 0.1218 | | 0.2111 | 12.0 | 1146 | 0.4501 | 0.5916 | 0.1194 | | 0.1881 | 12.9948 | 1241 | 0.4514 | 0.5645 | 0.1140 | | 0.1672 | 14.0 | 1337 | 0.4553 | 0.5761 | 0.1224 | | 0.1532 | 14.9948 | 1432 | 0.4780 | 0.5764 | 0.1179 | | 0.1421 | 16.0 | 1528 | 0.4795 | 0.5767 | 0.1177 | | 0.1357 | 16.9948 | 1623 | 0.4573 | 0.5643 | 0.1189 | | 0.1248 | 18.0 | 1719 | 0.4774 | 0.5679 | 0.1202 | | 0.1176 | 18.9948 | 1814 | 0.5095 | 0.5659 | 0.1186 | | 0.111 | 20.0 | 1910 | 0.4775 | 0.5562 | 0.1138 | | 0.1093 | 20.9948 | 2005 | 0.5052 | 0.5465 | 0.1115 | | 0.1017 | 22.0 | 2101 | 0.5074 | 0.5464 | 0.1123 | | 0.1017 | 22.9948 | 2196 | 0.5003 | 0.5419 | 0.1135 | | 0.0965 | 24.0 | 2292 | 0.5247 | 0.5420 | 0.1130 | | 0.0947 | 24.9948 | 2387 | 0.5224 | 0.5474 | 0.1152 | | 0.0903 | 26.0 | 2483 | 0.5124 | 0.5250 | 0.1089 | | 0.0865 | 26.9948 | 2578 | 0.5339 | 0.5387 | 0.1100 | | 0.0837 | 28.0 | 2674 | 0.5362 | 0.5340 | 0.1128 | | 0.0836 | 28.9948 | 2769 | 0.5354 | 0.5276 | 0.1095 | | 0.0773 | 30.0 | 2865 | 0.5512 | 0.5352 | 0.1101 | | 0.075 | 30.9948 | 2960 | 0.5162 | 0.5102 | 0.1058 | | 0.0723 | 32.0 | 3056 | 0.5296 | 0.5236 | 0.1057 | | 0.0764 | 32.9948 | 3151 | 0.5447 | 0.5289 | 0.1083 | | 0.0706 | 34.0 | 3247 | 0.5291 | 0.5355 | 0.1138 | | 0.0694 | 34.9948 | 3342 | 0.5314 | 0.5244 | 0.1116 | | 0.0679 | 36.0 | 3438 | 0.5199 | 0.5215 | 0.1135 | | 0.0645 | 36.9948 | 3533 | 0.5555 | 0.5244 | 0.1118 | | 0.0623 | 38.0 | 3629 | 0.5392 | 0.5266 | 0.1141 | | 0.0622 | 38.9948 | 3724 | 0.5500 | 0.5248 | 0.1125 | | 0.06 | 40.0 | 3820 | 0.5467 | 0.5197 | 0.1121 | | 0.0598 | 40.9948 | 3915 | 0.5405 | 0.5161 | 0.1120 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1