# k2_zipformer2_english_v1 - Zipformer2 recipe derived from : https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/zipformer - Training data : CommonVoice, VoxPopuli (speed-perturb 3x): - cca 1500 + 3x500 hours of training data - Output text/symbols include: - TrueCase capitalization - punctuation `[,.?!]` as standalone tokens ## Config: ``` --num-epochs 20 \ --base-lr 0.04 \ \ --causal 1 \ --use-transducer 1 \ --use-ctc 0 \ \ --num-encoder-layers 2,2,2,2,2,2 \ --feedforward-dim 512,768,768,768,768,768 \ --encoder-dim 192,256,256,256,256,256 \ --encoder-unmasked-dim 192,192,192,192,192,192 \ ``` ## Results | ID | System | cv-dev | cv-test | vp-dev | vp-test | Comment | |---|-------------------------|--------|---------|--------|---------|-------------------------------| | A | small (24M) | 18.57 | 21.98 | 13.66 | 13.26 | ep20,avg4 | - non-streaming results from [decode.py](https://github.com/BUTSpeechFIT/k2_streaming_training/blob/main/training/zipformer/decode.py) - cv = CommonVoice, vp = VoxPopuli - exported the model averaging : ep20,avg4 ## Note - Not the best possible results, this model is for integration tests