from itertools import repeat import collections.abc import logging import math import numpy as np import torch from torch import nn as nn from torchvision.ops.misc import FrozenBatchNorm2d import torch.nn.functional as F # open CLIP def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict old_pos_embed = state_dict.get('visual.positional_embedding', None) if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) new_seq_len = grid_size[0] * grid_size[1] + extra_tokens if new_seq_len == old_pos_embed.shape[0]: return if extra_tokens: pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] else: pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, size=grid_size, mode=interpolation, align_corners=True, ) pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] if pos_emb_tok is not None: new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img state_dict['visual.positional_embedding'] = new_pos_embed def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict old_pos_embed = state_dict.get('positional_embedding', None) if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) new_seq_len = grid_size[0] * grid_size[1] + extra_tokens if new_seq_len == old_pos_embed.shape[0]: return if extra_tokens: pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] else: pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, size=grid_size, mode=interpolation, align_corners=True, ) pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] if pos_emb_tok is not None: new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img state_dict['positional_embedding'] = new_pos_embed def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) # interpolate position embedding if 'visual.pos_embed' in state_dict: pos_embed_checkpoint = state_dict['visual.pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens.float(), size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['visual.pos_embed'] = new_pos_embed patch_embed_proj = state_dict['visual.patch_embed.proj.weight'] patch_size = model.visual.patch_embed.patch_size state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) # interpolate position embedding if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed patch_embed_proj = state_dict['patch_embed.proj.weight'] patch_size = model.visual.patch_embed.patch_size state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.visual.state_dict()[key].size() dst_patch_shape = model.visual.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = F.interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias # interpolate position embedding if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed patch_embed_proj = state_dict['patch_embed.proj.weight'] patch_size = model.visual.patch_embed.patch_size state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) def freeze_batch_norm_2d(module, module_match={}, name=''): """ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and returned. Otherwise, the module is walked recursively and submodules are converted in place. Args: module (torch.nn.Module): Any PyTorch module. module_match (dict): Dictionary of full module names to freeze (all if empty) name (str): Full module name (prefix) Returns: torch.nn.Module: Resulting module Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 """ res = module is_match = True if module_match: is_match = name in module_match if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)): res = FrozenBatchNorm2d(module.num_features) res.num_features = module.num_features res.affine = module.affine if module.affine: res.weight.data = module.weight.data.clone().detach() res.bias.data = module.bias.data.clone().detach() res.running_mean.data = module.running_mean.data res.running_var.data = module.running_var.data res.eps = module.eps else: for child_name, child in module.named_children(): full_child_name = '.'.join([name, child_name]) if name else child_name new_child = freeze_batch_norm_2d(child, module_match, full_child_name) if new_child is not child: res.add_module(child_name, new_child) return res # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = lambda n, x: _ntuple(n)(x) def is_logging(args): def is_global_master(args): return args.rank == 0 def is_local_master(args): return args.local_rank == 0 def is_master(args, local=False): return is_local_master(args) if local else is_global_master(args) return is_master class AllGather(torch.autograd.Function): """An autograd function that performs allgather on a tensor. Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ @staticmethod def forward(ctx, tensor, rank, world_size): tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)] torch.distributed.all_gather(tensors_gather, tensor) ctx.rank = rank ctx.batch_size = tensor.shape[0] return torch.cat(tensors_gather, 0) @staticmethod def backward(ctx, grad_output): return ( grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)], None, None ) allgather = AllGather.apply