--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deBert-finetuned-ner-v1 results: [] --- # deBert-finetuned-ner-v1 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Precision: 0.9674 - Recall: 0.9784 - F1: 0.9728 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.037 | 1.0 | 950 | 0.0017 | 0.9350 | 0.9664 | 0.9505 | 0.9995 | | 0.0013 | 2.0 | 1900 | 0.0011 | 0.9644 | 0.9758 | 0.9701 | 0.9996 | | 0.0006 | 3.0 | 2850 | 0.0010 | 0.9674 | 0.9784 | 0.9728 | 0.9997 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2