--- license: mit tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biogpt-new results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.4968085106382979 - name: Recall type: recall value: 0.5933926302414231 - name: F1 type: f1 value: 0.540822235089751 - name: Accuracy type: accuracy value: 0.9570189427826831 --- # biogpt-new This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1984 - Precision: 0.4968 - Recall: 0.5934 - F1: 0.5408 - Accuracy: 0.9570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1683 | 1.0 | 680 | 0.1669 | 0.3778 | 0.4752 | 0.4209 | 0.9512 | | 0.1407 | 2.0 | 1360 | 0.1529 | 0.4183 | 0.5337 | 0.4690 | 0.9521 | | 0.0813 | 3.0 | 2040 | 0.1548 | 0.4751 | 0.5820 | 0.5231 | 0.9570 | | 0.0592 | 4.0 | 2720 | 0.1762 | 0.4966 | 0.5565 | 0.5249 | 0.9582 | | 0.051 | 5.0 | 3400 | 0.1984 | 0.4968 | 0.5934 | 0.5408 | 0.9570 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3