File size: 3,911 Bytes
e477aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e4553
e477aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f99ad6
e477aa9
 
 
 
 
 
5f99ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e477aa9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: apache-2.0
base_model: Geotrend/distilbert-base-pl-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-pl-cased-finetuned-eo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-pl-cased-finetuned-eo

This model is a fine-tuned version of [Geotrend/distilbert-base-pl-cased](https://huggingface.co/Geotrend/distilbert-base-pl-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4541        | 1.0   | 20   | 1.5317          |
| 1.5138        | 2.0   | 40   | 1.2678          |
| 1.2893        | 3.0   | 60   | 1.0208          |
| 1.135         | 4.0   | 80   | 1.0185          |
| 1.0288        | 5.0   | 100  | 0.9068          |
| 0.9607        | 6.0   | 120  | 0.8102          |
| 0.8933        | 7.0   | 140  | 0.8191          |
| 0.8595        | 8.0   | 160  | 0.8191          |
| 0.8314        | 9.0   | 180  | 0.6913          |
| 0.7866        | 10.0  | 200  | 0.6317          |
| 0.7642        | 11.0  | 220  | 0.6345          |
| 0.7114        | 12.0  | 240  | 0.6749          |
| 0.7033        | 13.0  | 260  | 0.6147          |
| 0.6435        | 14.0  | 280  | 0.5894          |
| 0.6545        | 15.0  | 300  | 0.5822          |
| 0.6255        | 16.0  | 320  | 0.5452          |
| 0.602         | 17.0  | 340  | 0.5521          |
| 0.594         | 18.0  | 360  | 0.4672          |
| 0.5572        | 19.0  | 380  | 0.5322          |
| 0.5614        | 20.0  | 400  | 0.5200          |
| 0.556         | 21.0  | 420  | 0.5213          |
| 0.5616        | 22.0  | 440  | 0.5052          |
| 0.5249        | 23.0  | 460  | 0.4811          |
| 0.5403        | 24.0  | 480  | 0.4990          |
| 0.5081        | 25.0  | 500  | 0.4572          |
| 0.5153        | 26.0  | 520  | 0.4845          |
| 0.4962        | 27.0  | 540  | 0.4954          |
| 0.4834        | 28.0  | 560  | 0.4418          |
| 0.4782        | 29.0  | 580  | 0.4987          |
| 0.5126        | 30.0  | 600  | 0.5001          |
| 0.4829        | 31.0  | 620  | 0.4515          |
| 0.4671        | 32.0  | 640  | 0.4400          |
| 0.4514        | 33.0  | 660  | 0.4875          |
| 0.488         | 34.0  | 680  | 0.4000          |
| 0.4642        | 35.0  | 700  | 0.4538          |
| 0.4481        | 36.0  | 720  | 0.4452          |
| 0.4505        | 37.0  | 740  | 0.4636          |
| 0.4554        | 38.0  | 760  | 0.4645          |
| 0.4322        | 39.0  | 780  | 0.4615          |
| 0.4394        | 40.0  | 800  | 0.4676          |
| 0.4325        | 41.0  | 820  | 0.4072          |
| 0.4077        | 42.0  | 840  | 0.4518          |
| 0.416         | 43.0  | 860  | 0.4514          |
| 0.4382        | 44.0  | 880  | 0.4459          |
| 0.4395        | 45.0  | 900  | 0.4757          |
| 0.4188        | 46.0  | 920  | 0.4870          |
| 0.4052        | 47.0  | 940  | 0.4658          |
| 0.4273        | 48.0  | 960  | 0.4168          |
| 0.435         | 49.0  | 980  | 0.3387          |
| 0.432         | 50.0  | 1000 | 0.4673          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0