File size: 3,911 Bytes
e477aa9 c1e4553 e477aa9 5f99ad6 e477aa9 5f99ad6 e477aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
base_model: Geotrend/distilbert-base-pl-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-pl-cased-finetuned-eo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-pl-cased-finetuned-eo
This model is a fine-tuned version of [Geotrend/distilbert-base-pl-cased](https://huggingface.co/Geotrend/distilbert-base-pl-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4275
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4541 | 1.0 | 20 | 1.5317 |
| 1.5138 | 2.0 | 40 | 1.2678 |
| 1.2893 | 3.0 | 60 | 1.0208 |
| 1.135 | 4.0 | 80 | 1.0185 |
| 1.0288 | 5.0 | 100 | 0.9068 |
| 0.9607 | 6.0 | 120 | 0.8102 |
| 0.8933 | 7.0 | 140 | 0.8191 |
| 0.8595 | 8.0 | 160 | 0.8191 |
| 0.8314 | 9.0 | 180 | 0.6913 |
| 0.7866 | 10.0 | 200 | 0.6317 |
| 0.7642 | 11.0 | 220 | 0.6345 |
| 0.7114 | 12.0 | 240 | 0.6749 |
| 0.7033 | 13.0 | 260 | 0.6147 |
| 0.6435 | 14.0 | 280 | 0.5894 |
| 0.6545 | 15.0 | 300 | 0.5822 |
| 0.6255 | 16.0 | 320 | 0.5452 |
| 0.602 | 17.0 | 340 | 0.5521 |
| 0.594 | 18.0 | 360 | 0.4672 |
| 0.5572 | 19.0 | 380 | 0.5322 |
| 0.5614 | 20.0 | 400 | 0.5200 |
| 0.556 | 21.0 | 420 | 0.5213 |
| 0.5616 | 22.0 | 440 | 0.5052 |
| 0.5249 | 23.0 | 460 | 0.4811 |
| 0.5403 | 24.0 | 480 | 0.4990 |
| 0.5081 | 25.0 | 500 | 0.4572 |
| 0.5153 | 26.0 | 520 | 0.4845 |
| 0.4962 | 27.0 | 540 | 0.4954 |
| 0.4834 | 28.0 | 560 | 0.4418 |
| 0.4782 | 29.0 | 580 | 0.4987 |
| 0.5126 | 30.0 | 600 | 0.5001 |
| 0.4829 | 31.0 | 620 | 0.4515 |
| 0.4671 | 32.0 | 640 | 0.4400 |
| 0.4514 | 33.0 | 660 | 0.4875 |
| 0.488 | 34.0 | 680 | 0.4000 |
| 0.4642 | 35.0 | 700 | 0.4538 |
| 0.4481 | 36.0 | 720 | 0.4452 |
| 0.4505 | 37.0 | 740 | 0.4636 |
| 0.4554 | 38.0 | 760 | 0.4645 |
| 0.4322 | 39.0 | 780 | 0.4615 |
| 0.4394 | 40.0 | 800 | 0.4676 |
| 0.4325 | 41.0 | 820 | 0.4072 |
| 0.4077 | 42.0 | 840 | 0.4518 |
| 0.416 | 43.0 | 860 | 0.4514 |
| 0.4382 | 44.0 | 880 | 0.4459 |
| 0.4395 | 45.0 | 900 | 0.4757 |
| 0.4188 | 46.0 | 920 | 0.4870 |
| 0.4052 | 47.0 | 940 | 0.4658 |
| 0.4273 | 48.0 | 960 | 0.4168 |
| 0.435 | 49.0 | 980 | 0.3387 |
| 0.432 | 50.0 | 1000 | 0.4673 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|