--- language: - sv pipeline_tag: automatic-speech-recognition --- ## KB-Whisper Medium (Beta) Preliminary checkpoint of the National Library of Sweden's new Whisper models for Swedish. This version is for testing only, it has completed its first stage of continued pre-training. We will be doing additional post-training to reduce hallucations before releasing the final version of the model. ### Usage ```python import torch from datasets import load_dataset from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "KBLab/kb-whisper-medium-beta" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache" ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) generate_kwargs = {"task": "transcribe", "language": "sv"} # Add return_timestamps=True for output with timestamps res = pipe("audio.mp3", chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"}) ```