--- license: apache-2.0 tags: - automatic-speech-recognition - experiments/data/atcosim_uwb_atcc/train - generated_from_trainer metrics: - wer model-index: - name: 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc results: [] --- # 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the EXPERIMENTS/DATA/ATCOSIM_UWB_ATCC/TRAIN - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.5595 - Wer: 0.1687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.63 | 500 | 3.0458 | 1.0 | | 2.9181 | 1.27 | 1000 | 1.1503 | 0.4723 | | 2.9181 | 1.9 | 1500 | 0.8275 | 0.3500 | | 0.7646 | 2.53 | 2000 | 0.6990 | 0.2845 | | 0.7646 | 3.17 | 2500 | 0.5828 | 0.2509 | | 0.5394 | 3.8 | 3000 | 0.5363 | 0.2487 | | 0.5394 | 4.44 | 3500 | 0.5467 | 0.2171 | | 0.4558 | 5.07 | 4000 | 0.5290 | 0.2090 | | 0.4558 | 5.7 | 4500 | 0.4992 | 0.2046 | | 0.3773 | 6.34 | 5000 | 0.4934 | 0.2052 | | 0.3773 | 6.97 | 5500 | 0.4700 | 0.1983 | | 0.3301 | 7.6 | 6000 | 0.4938 | 0.1874 | | 0.3301 | 8.24 | 6500 | 0.5364 | 0.1893 | | 0.2938 | 8.87 | 7000 | 0.5170 | 0.1830 | | 0.2938 | 9.51 | 7500 | 0.5408 | 0.1815 | | 0.2674 | 10.14 | 8000 | 0.5581 | 0.1733 | | 0.2674 | 10.77 | 8500 | 0.5389 | 0.1719 | | 0.24 | 11.41 | 9000 | 0.5344 | 0.1714 | | 0.24 | 12.04 | 9500 | 0.5503 | 0.1686 | | 0.211 | 12.67 | 10000 | 0.5595 | 0.1687 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2