Update README.md
Browse files
README.md
CHANGED
|
@@ -1,94 +1,94 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
base_model: JusteLeo/Qwen3-0.6B-T5-xxl
|
| 6 |
-
tags:
|
| 7 |
-
- split
|
| 8 |
-
- encoder
|
| 9 |
-
- embedding
|
| 10 |
-
- Text Generation
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
# Qwen3-0.6B-T5-xxl-split
|
| 14 |
-
|
| 15 |
-
## Model Description
|
| 16 |
-
|
| 17 |
-
This repository provides the components of the `Qwen3-0.6B-T5-xxl` model, split into two parts. This is intended for advanced users who wish to perform custom operations, such as GGUF conversion or other model architecture modifications.
|
| 18 |
-
|
| 19 |
-
Both components are provided in **float32** format to ensure maximum precision for downstream tasks like quantization.
|
| 20 |
-
|
| 21 |
-
## Repository Contents
|
| 22 |
-
|
| 23 |
-
- **/qwen_body/**: Contains the fine-tuned `Qwen3-0.6B` model body. This is a standard Hugging Face model directory. The model weights are in `float32`.
|
| 24 |
-
- **/projection_head/**: Contains the fine-tuned projection head as a single `projection_head.pth` file. This is a PyTorch state dictionary.
|
| 25 |
-
|
| 26 |
-
## How to Use
|
| 27 |
-
|
| 28 |
-
To use these components, you need to load them separately and then combine them in a two-step inference process.
|
| 29 |
-
|
| 30 |
-
```python
|
| 31 |
-
import torch
|
| 32 |
-
from torch import nn
|
| 33 |
-
from transformers import AutoTokenizer, AutoModel
|
| 34 |
-
import numpy as np
|
| 35 |
-
|
| 36 |
-
# --- 1. Load Components ---
|
| 37 |
-
device = "cuda"
|
| 38 |
-
|
| 39 |
-
# Load the model body
|
| 40 |
-
body_model = AutoModel.from_pretrained("./qwen_body").to(device)
|
| 41 |
-
tokenizer = AutoTokenizer.from_pretrained("./qwen_body")
|
| 42 |
-
|
| 43 |
-
# Load the projection head
|
| 44 |
-
# First, re-create the architecture
|
| 45 |
-
input_dim = body_model.config.hidden_size # 1024
|
| 46 |
-
hidden_dim = 2048
|
| 47 |
-
output_dim = 4096
|
| 48 |
-
head_model = nn.Sequential(
|
| 49 |
-
nn.Linear(input_dim, hidden_dim),
|
| 50 |
-
nn.GELU(),
|
| 51 |
-
nn.Dropout(0.1),
|
| 52 |
-
nn.Linear(hidden_dim, output_dim)
|
| 53 |
-
).to(device)
|
| 54 |
-
# Then, load the saved weights
|
| 55 |
-
head_model.load_state_dict(torch.load("./projection_head/projection_head.pth"))
|
| 56 |
-
|
| 57 |
-
body_model.eval()
|
| 58 |
-
head_model.eval()
|
| 59 |
-
|
| 60 |
-
# --- 2. Create a unified inference function ---
|
| 61 |
-
def get_final_embedding(text: str):
|
| 62 |
-
# a) Tokenize the input text
|
| 63 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 64 |
-
|
| 65 |
-
# b) Get the base embedding from the body model
|
| 66 |
-
with torch.no_grad():
|
| 67 |
-
outputs_body = body_model(**inputs)
|
| 68 |
-
last_hidden_state = outputs_body.last_hidden_state
|
| 69 |
-
|
| 70 |
-
# c) Perform mean pooling
|
| 71 |
-
attention_mask = inputs['attention_mask']
|
| 72 |
-
mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 73 |
-
sum_embeddings = torch.sum(last_hidden_state * mask_expanded, 1)
|
| 74 |
-
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
| 75 |
-
pooled_embedding = sum_embeddings / sum_mask
|
| 76 |
-
|
| 77 |
-
# d) Pass the pooled embedding through the projection head
|
| 78 |
-
with torch.no_grad():
|
| 79 |
-
final_embedding = head_model(pooled_embedding)
|
| 80 |
-
|
| 81 |
-
return final_embedding
|
| 82 |
-
|
| 83 |
-
# --- 3. Test the pipeline ---
|
| 84 |
-
prompt = "A high-tech laboratory with glowing vials and holographic displays."
|
| 85 |
-
embedding = get_final_embedding(prompt)
|
| 86 |
-
|
| 87 |
-
print("Inference successful!")
|
| 88 |
-
print(f"Output shape: {embedding.shape}")
|
| 89 |
-
# Expected output shape: (1, 4096)
|
| 90 |
-
```
|
| 91 |
-
|
| 92 |
-
## License
|
| 93 |
-
|
| 94 |
-
This repository is licensed under the **
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model: JusteLeo/Qwen3-0.6B-T5-xxl
|
| 6 |
+
tags:
|
| 7 |
+
- split
|
| 8 |
+
- encoder
|
| 9 |
+
- embedding
|
| 10 |
+
- Text Generation
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Qwen3-0.6B-T5-xxl-split
|
| 14 |
+
|
| 15 |
+
## Model Description
|
| 16 |
+
|
| 17 |
+
This repository provides the components of the `Qwen3-0.6B-T5-xxl` model, split into two parts. This is intended for advanced users who wish to perform custom operations, such as GGUF conversion or other model architecture modifications.
|
| 18 |
+
|
| 19 |
+
Both components are provided in **float32** format to ensure maximum precision for downstream tasks like quantization.
|
| 20 |
+
|
| 21 |
+
## Repository Contents
|
| 22 |
+
|
| 23 |
+
- **/qwen_body/**: Contains the fine-tuned `Qwen3-0.6B` model body. This is a standard Hugging Face model directory. The model weights are in `float32`.
|
| 24 |
+
- **/projection_head/**: Contains the fine-tuned projection head as a single `projection_head.pth` file. This is a PyTorch state dictionary.
|
| 25 |
+
|
| 26 |
+
## How to Use
|
| 27 |
+
|
| 28 |
+
To use these components, you need to load them separately and then combine them in a two-step inference process.
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
from torch import nn
|
| 33 |
+
from transformers import AutoTokenizer, AutoModel
|
| 34 |
+
import numpy as np
|
| 35 |
+
|
| 36 |
+
# --- 1. Load Components ---
|
| 37 |
+
device = "cuda"
|
| 38 |
+
|
| 39 |
+
# Load the model body
|
| 40 |
+
body_model = AutoModel.from_pretrained("./qwen_body").to(device)
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained("./qwen_body")
|
| 42 |
+
|
| 43 |
+
# Load the projection head
|
| 44 |
+
# First, re-create the architecture
|
| 45 |
+
input_dim = body_model.config.hidden_size # 1024
|
| 46 |
+
hidden_dim = 2048
|
| 47 |
+
output_dim = 4096
|
| 48 |
+
head_model = nn.Sequential(
|
| 49 |
+
nn.Linear(input_dim, hidden_dim),
|
| 50 |
+
nn.GELU(),
|
| 51 |
+
nn.Dropout(0.1),
|
| 52 |
+
nn.Linear(hidden_dim, output_dim)
|
| 53 |
+
).to(device)
|
| 54 |
+
# Then, load the saved weights
|
| 55 |
+
head_model.load_state_dict(torch.load("./projection_head/projection_head.pth"))
|
| 56 |
+
|
| 57 |
+
body_model.eval()
|
| 58 |
+
head_model.eval()
|
| 59 |
+
|
| 60 |
+
# --- 2. Create a unified inference function ---
|
| 61 |
+
def get_final_embedding(text: str):
|
| 62 |
+
# a) Tokenize the input text
|
| 63 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 64 |
+
|
| 65 |
+
# b) Get the base embedding from the body model
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
outputs_body = body_model(**inputs)
|
| 68 |
+
last_hidden_state = outputs_body.last_hidden_state
|
| 69 |
+
|
| 70 |
+
# c) Perform mean pooling
|
| 71 |
+
attention_mask = inputs['attention_mask']
|
| 72 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 73 |
+
sum_embeddings = torch.sum(last_hidden_state * mask_expanded, 1)
|
| 74 |
+
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
| 75 |
+
pooled_embedding = sum_embeddings / sum_mask
|
| 76 |
+
|
| 77 |
+
# d) Pass the pooled embedding through the projection head
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
final_embedding = head_model(pooled_embedding)
|
| 80 |
+
|
| 81 |
+
return final_embedding
|
| 82 |
+
|
| 83 |
+
# --- 3. Test the pipeline ---
|
| 84 |
+
prompt = "A high-tech laboratory with glowing vials and holographic displays."
|
| 85 |
+
embedding = get_final_embedding(prompt)
|
| 86 |
+
|
| 87 |
+
print("Inference successful!")
|
| 88 |
+
print(f"Output shape: {embedding.shape}")
|
| 89 |
+
# Expected output shape: (1, 4096)
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## License
|
| 93 |
+
|
| 94 |
+
This repository is licensed under the **Apache license 2.0**.
|