--- base_model: JunxiongWang/llama3_mamba_0_5_sft tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - HuggingFaceH4/orca_dpo_pairs - JunxiongWang/llama3-ultrafeedback-armorm model-index: - name: JunxiongWang/MambaInLlama_0_75 results: [] --- Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details. [Visualize in Weights & Biases](https://wandb.ai/junxiong12/huggingface/runs/r6tc13dv) # JunxiongWang/MambaInLlama_0_75 This model is a fine-tuned version of [JunxiongWang/llama3_mamba_0_5_sft](https://huggingface.co/JunxiongWang/llama3_mamba_0_5_sft) on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. It achieves the following results on the evaluation set: - Loss: 0.4267 - Rewards/chosen: -2.0115 - Rewards/rejected: -3.6264 - Rewards/accuracies: 0.8446 - Rewards/margins: 1.6149 - Logps/rejected: -623.4196 - Logps/chosen: -453.7957 - Logits/rejected: -0.5789 - Logits/chosen: -0.5575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4416 | 0.4798 | 2000 | 0.4531 | -1.7142 | -3.1448 | 0.8161 | 1.4306 | -575.2556 | -424.0602 | -0.7765 | -0.7618 | | 0.46 | 0.9597 | 4000 | 0.4267 | -2.0115 | -3.6264 | 0.8446 | 1.6149 | -623.4196 | -453.7957 | -0.5789 | -0.5575 | ### Framework versions - Transformers 4.43.1 - Pytorch 2.1.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1 [MambaInLlama](arxiv.org/abs/2408.15237) ``` @article{junxiongdaniele2024mambainllama, title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models}, author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao}, journal = {arXiv preprint arXiv:2408.15237}, year = {2024} } ```