{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45b65237e0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674546604157466898, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALnZ1j4HmZg/enZuv0tXoz26rgS+3hnFPjrEtb/Yg+4+zISVP48ycb2JGSa/TksVP+++ir9l/ZQ+hdH9PlZ1vr7e3AS/bYOvvscG2b/0ZjU/iTujP7szWr/TvEw/EZ4mvvTybT9TTAo/25qtPhkLKz9ZpeC/6OyXv5DWMD82MgW/nk8NPjSptz1Gmt++JBYhvX3BcT/NpcQ+xM5Yv8M34b0TNiY8ofEPPz4shj87bxg8IrvfP2O88z77iyw/TFfzPjraWT/pNfE9dCOsvpPRUT308m0/U0wKP9uarT4ZCys/xCeEPqqkgj9IiQK/VWdpP6e8zT/Ajdc+02OaPiv2Pb+3zZQ/EP+yvLaimj8gChE/P7HEvwOd4D6RhAe/Onc2v9JNSD8lIL6+yzgrP/3D7ztTjUo/Zbb6vy2QuL364RFA9PJtP1NMCj/bmq0+wZO/v+Qo8L1E8II/p8ADvwEkrz7j2tA/q0tUPr7/Hz9pqQI/RxaWP4Eq1b0knRs/FQiGPz0d0L+RbT8++499Pii9M8A9cmy+5aoqP44fMT59SNs/BrCuP2Wxg76rZhG+w/DsPvTybT/37+y/25qtPhkLKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJRYU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARA2mvQAAAAAnBeK/AAAAABQoerwAAAAAP9frPwAAAADb2+e8AAAAAOPc9D8AAAAAA08OvgAAAABCzd2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVCAtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGnWkj0AAAAA9l33vwAAAADTFe69AAAAAJxa+j8AAAAAHFnSPAAAAAAG/vc/AAAAAF0t970AAAAAtsn+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnqdLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDRxgk9AAAAAIGi9L8AAAAAAhfGPQAAAAAsKfM/AAAAAFhL0L0AAAAA8oMAQAAAAADfjuQ9AAAAAE4P3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4XQa3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQPSUPQAAAADv29m/AAAAABN0AL4AAAAAa9r4PwAAAABomRu9AAAAAFGL/j8AAAAA37HkPQAAAAB6Jfe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMc7OdGy5aMAWyUTegDjAF0lEdApkACZc9nsnV9lChoBkdAksiSDh99dGgHTegDaAhHQKZC2ndfsu51fZQoaAZHQJJ3CqABkqdoB03oA2gIR0CmRBu0b961dX2UKGgGR0CS08pyp71JaAdN6ANoCEdApkgiNGViWnV9lChoBkdAkxaycwxnF2gHTegDaAhHQKZLpxR2r4p1fZQoaAZHQJO00+FDfFdoB03oA2gIR0CmTm9AxBVudX2UKGgGR0CTzbCAMDwIaAdN6ANoCEdApk+0Md92HXV9lChoBkdAlCp2jsUqQWgHTegDaAhHQKZTtC79Q411fZQoaAZHQJPRjwTdtVJoB03oA2gIR0CmVz7rcCYDdX2UKGgGR0CTudOafBepaAdN6ANoCEdAploMSmIj4nV9lChoBkdAlUcxBiTdL2gHTegDaAhHQKZbV+pfhMt1fZQoaAZHQJL3I/1QIldoB03oA2gIR0CmX0u7YkE+dX2UKGgGR0COFc5LAYYSaAdN6ANoCEdApmLNkUbkwXV9lChoBkdAkbn4BmwqzGgHTegDaAhHQKZllXuE25x1fZQoaAZHQJFXyBtk4FRoB03oA2gIR0CmZuCvPkaNdX2UKGgGR0CT7bFvhqCZaAdN6ANoCEdApmrPO0LMLXV9lChoBkdAkfZ4KtxMnWgHTegDaAhHQKZuP/Q0GeN1fZQoaAZHQJAg0IomXw9oB03oA2gIR0CmcQ09QoCudX2UKGgGR0CT6FjBl+VkaAdN6ANoCEdApnJYkgOjI3V9lChoBkdAkaUUofCAMGgHTegDaAhHQKZ2oBiCrcV1fZQoaAZHQI89nbypaRpoB03oA2gIR0Cmeh9lVcUudX2UKGgGR0CQu5s8gZCOaAdN6ANoCEdApnzzjT8YRHV9lChoBkdAkdqHuE25x2gHTegDaAhHQKZ+NABT4tZ1fZQoaAZHQJM1xmrbQC1oB03oA2gIR0Cmgh2criEQdX2UKGgGR0CRyty925hCaAdN6ANoCEdApoWpxaPjn3V9lChoBkdAk/bwzP8htGgHTegDaAhHQKaIc2itaIN1fZQoaAZHQJKjcXuVopRoB03oA2gIR0CmibtOuaF3dX2UKGgGR0CRo1ZIxxkvaAdN6ANoCEdApo20WXTmXHV9lChoBkdAkksjMmnfmGgHTegDaAhHQKaRN4hUzbh1fZQoaAZHQJE3kzpHI6toB03oA2gIR0Cmk/WjwhGIdX2UKGgGR0CKc6+mFajfaAdN6ANoCEdAppU4zzmOl3V9lChoBkdAiFgu3MINVmgHTegDaAhHQKaZLAood+51fZQoaAZHQItDT0e2d/doB03oA2gIR0CmnKoRh+fAdX2UKGgGR0CTipysCDEnaAdN6ANoCEdApp+Kcd5prXV9lChoBkdAkf0CAQQL/mgHTegDaAhHQKagzFLFn7J1fZQoaAZHQJFfm/mDDj1oB03oA2gIR0CmpNAfEGaAdX2UKGgGR0CUSq4t6HCXaAdN6ANoCEdApqhd7ngYQHV9lChoBkdAkeGS1JDmbWgHTegDaAhHQKarJPdl/Yt1fZQoaAZHQJBbjeUILPVoB03oA2gIR0CmrGq508vFdX2UKGgGR0CQpNFPBSDRaAdN6ANoCEdAprCLQkX1rnV9lChoBkdAkMUyt7rs0GgHTegDaAhHQKa0FoYekpJ1fZQoaAZHQJSH1RpDeCVoB03oA2gIR0Cmtu8FpwjudX2UKGgGR0CQgxBkqc3EaAdN6ANoCEdAprg1k4FRpHV9lChoBkdAkN2isS00FmgHTegDaAhHQKa8Qn6VMVV1fZQoaAZHQI2hzYTTOPhoB03oA2gIR0Cmv8WSdOIqdX2UKGgGR0CT5Vs0HhS+aAdN6ANoCEdApsK7mbLEDXV9lChoBkdAkCB/69CeE2gHTegDaAhHQKbEDHjIaLp1fZQoaAZHQJO+y0Re1KJoB03oA2gIR0CmyALadtl7dX2UKGgGR0CPXKDHOryUaAdN6ANoCEdApsuWcUdq+XV9lChoBkdAkJBcnJDE32gHTegDaAhHQKbOdGz8gp11fZQoaAZHQJU33BzmwJRoB03oA2gIR0Cmz7dtEXtTdX2UKGgGR0CTOMC1Z1V6aAdN6ANoCEdAptO6DsdDIHV9lChoBkdAk004cWCVbGgHTegDaAhHQKbXR19v0iB1fZQoaAZHQJVY8hFEy+JoB03oA2gIR0Cm2hC+L3sYdX2UKGgGR0CVlnFUyYXwaAdN6ANoCEdApttUD2alUXV9lChoBkdAkrhnAmAskWgHTegDaAhHQKbfT7qIJqt1fZQoaAZHQI78r987ZFpoB03oA2gIR0Cm4vmdZq20dX2UKGgGR0CB9gOJ+DvmaAdN6ANoCEdApuW9sguAZ3V9lChoBkdAkAGD8xbjcWgHTegDaAhHQKbm/42S+xp1fZQoaAZHQJAJrMaCL/FoB03oA2gIR0Cm65o1DSgHdX2UKGgGR0CJCOTJyQxOaAdN6ANoCEdApvEXbuc+aHV9lChoBkdAk3Ksf7rLQ2gHTegDaAhHQKb0sdvKlpJ1fZQoaAZHQI5TxFXq7iBoB03oA2gIR0Cm9fpRO1v3dX2UKGgGR0CORQYNy5qeaAdN6ANoCEdApvoJDst03nV9lChoBkdAkogNMPBi1GgHTegDaAhHQKb9l9n9Nvh1fZQoaAZHQIuovlfZ26loB03oA2gIR0CnAGz9jwx4dX2UKGgGR0CLgaz4UN8WaAdN6ANoCEdApwG4pjMFEHV9lChoBkdAiJ/z2exwAGgHTegDaAhHQKcFtMNc4YJ1fZQoaAZHQJJP9fNRm9RoB03oA2gIR0CnCTqGcnVodX2UKGgGR0CN+f127nPnaAdN6ANoCEdApwwLy8SPEXV9lChoBkdAk7UWR/3Fk2gHTegDaAhHQKcNSAkLQX11fZQoaAZHQJJKrLRrrPdoB03oA2gIR0CnEVfVy3kQdX2UKGgGR0CTBKeyAxzraAdN6ANoCEdApxTQ4MnZ03V9lChoBkdAi3/jJuEVWWgHTegDaAhHQKcXpJ+2E011fZQoaAZHQJAmBtKqXF9oB03oA2gIR0CnGOCBf8dgdX2UKGgGR0CSgxdf9gndaAdN6ANoCEdApxzsbPyCnXV9lChoBkdAkXb+ZPVNH2gHTegDaAhHQKcgk3y7PIJ1fZQoaAZHQJIB6jUNKAdoB03oA2gIR0CnI3M0HhS+dX2UKGgGR0CS4lfcer+6aAdN6ANoCEdApyTIgA6uGXV9lChoBkdAgci36yjYZmgHTegDaAhHQKco5m6oVEd1fZQoaAZHQJFOChdt2s9oB03oA2gIR0CnLFVXFLnLdX2UKGgGR0CORJ+hGpdbaAdN6ANoCEdApy8ftY0VJ3V9lChoBkdAkkP4uf29MGgHTegDaAhHQKcwYPRzBAR1fZQoaAZHQI4mVI9TxXpoB03oA2gIR0CnNEpu2qkudX2UKGgGR0CUQev7m+0xaAdN6ANoCEdApzfgP/aQFXV9lChoBkdAicOvc8DB/WgHTegDaAhHQKc6zxGUfPp1fZQoaAZHQI4t0WuX/o9oB03oA2gIR0CnPB+0PYnOdX2UKGgGR0CPl33B55Z9aAdN6ANoCEdAp0AMSdvsJXV9lChoBkdAi5YvCdjG1mgHTegDaAhHQKdDl6po9LZ1fZQoaAZHQI1GjhR64UhoB03oA2gIR0CnRmytV7x/dX2UKGgGR0CJzruAI6bOaAdN6ANoCEdAp0evexfOU3V9lChoBkdAkLYwKfFrEmgHTegDaAhHQKdLtcE/0NB1fZQoaAZHQI25M0cfeUJoB03oA2gIR0CnTzjdgv12dX2UKGgGR0CTQsGVAzHkaAdN6ANoCEdAp1IaWu5jIHV9lChoBkdAjZ6nWjGkvmgHTegDaAhHQKdTYt+1Bt11fZQoaAZHQJMbFx3mmtRoB03oA2gIR0CnV29+XqqwdX2UKGgGR0CDw6NjLB9DaAdN6ANoCEdAp1s1M9KVZHV9lChoBkdAj5n4TbnHN2gHTegDaAhHQKdd/SCOFQF1fZQoaAZHQJKA0aaTfSBoB03oA2gIR0CnX0dhJAdGdX2UKGgGR0CSB+KWcBluaAdN6ANoCEdAp2M4oCuEEnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}