--- library_name: transformers language: - da license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - alexandrainst/ftspeech metrics: - wer model-index: - name: Whisper tiny FTSpeech - Julie results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ftspeech type: alexandrainst/ftspeech args: 'split: test' metrics: - name: Wer type: wer value: 97.17612214675995 --- # Whisper tiny FTSpeech - Julie This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the ftspeech dataset. It achieves the following results on the evaluation set: - Loss: 0.6006 - Wer: 97.1761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.9429 | 0.0080 | 500 | 0.9411 | 87.9967 | | 0.7782 | 0.0161 | 1000 | 0.7891 | 91.5049 | | 0.7176 | 0.0241 | 1500 | 0.7164 | 89.9351 | | 0.6545 | 0.0321 | 2000 | 0.6686 | 85.8745 | | 0.6171 | 0.0402 | 2500 | 0.6395 | 91.9062 | | 0.5767 | 0.0482 | 3000 | 0.6176 | 94.2052 | | 0.546 | 0.0562 | 3500 | 0.6006 | 97.1761 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0