--- tags: - autotrain - tabular - regression - tabular-regression datasets: - giulioappetito/churn_dataset_giulioappetito --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.75551694767912 - mse: 0.06038101818653434 - mae: 0.12572727079081708 - rmse: 0.24572549356250023 - rmsle: 0.1700195996741877 - loss: 0.24572549356250023 ## Best Params - learning_rate: 0.19966547950225813 - reg_lambda: 1.1910980465515898e-05 - reg_alpha: 0.003345407176272181 - subsample: 0.5134686751829827 - colsample_bytree: 0.7469701482100698 - max_depth: 7 - early_stopping_rounds: 407 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```