SpeechT5-Hausa-9 / README.md
Judah04's picture
End of training
6c28f9a verified
|
raw
history blame
2.51 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
model-index:
  - name: SpeechT5-Hausa-9
    results: []

SpeechT5-Hausa-9

This model is a fine-tuned version of microsoft/speecht5_tts on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6131 1.8476 100 0.5543
0.5611 3.6952 200 0.5054
0.5362 5.5427 300 0.4950
0.5222 7.3903 400 0.4837
0.5067 9.2379 500 0.4770
0.5028 11.0855 600 0.4733
0.4926 12.9330 700 0.4685
0.4833 14.7806 800 0.4640
0.4776 16.6282 900 0.4606
0.4769 18.4758 1000 0.4582
0.4715 20.3233 1100 0.4651
0.462 22.1709 1200 0.4612
0.4579 24.0185 1300 0.4616
0.455 25.8661 1400 0.4585
0.4551 27.7136 1500 0.4646
0.4516 29.5612 1600 0.4644
0.4471 31.4088 1700 0.4636
0.4427 33.2564 1800 0.4645
0.4494 35.1039 1900 0.4653
0.4357 36.9515 2000 0.4650

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1