--- license: apache-2.0 widget: - text: I'm fine. Who is this? - text: You can't take anything seriously. - text: In the end he''s going to croak, isn''t he? tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-gest-pred-seqeval-partialmatch results: [] datasets: - Jsevisal/gesture_pred language: - en pipeline_tag: token-classification --- # distilbert-gest-pred-seqeval-partialmatch This model is a fine-tuned version of [elastic/distilbert-base-cased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.711886 - Precision: 0.832250 - Recall: 0.832250 - F1: 0.832250 - Accuracy: 0.817295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.9119 | 1.0 | 147 | 1.1835 | 0.7412 | 0.7412 | 0.7412 | 0.7204 | | 0.9884 | 2.0 | 294 | 0.8666 | 0.7906 | 0.7906 | 0.7906 | 0.7731 | | 0.7238 | 3.0 | 441 | 0.7754 | 0.8056 | 0.8056 | 0.8056 | 0.7906 | | 0.5564 | 4.0 | 588 | 0.7129 | 0.8114 | 0.8114 | 0.8114 | 0.7965 | | 0.4343 | 5.0 | 735 | 0.7119 | 0.8322 | 0.8322 | 0.8322 | 0.8173 | | 0.3261 | 6.0 | 882 | 0.7545 | 0.8179 | 0.8179 | 0.8179 | 0.8075 | | 0.2688 | 7.0 | 1029 | 0.7760 | 0.8121 | 0.8121 | 0.8121 | 0.8010 | | 0.2178 | 8.0 | 1176 | 0.7744 | 0.8283 | 0.8283 | 0.8283 | 0.8179 | | 0.1822 | 9.0 | 1323 | 0.7894 | 0.8322 | 0.8322 | 0.8322 | 0.8231 | | 0.1636 | 10.0 | 1470 | 0.7941 | 0.8316 | 0.8316 | 0.8316 | 0.8218 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2