--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cfe-telmex-classification-finetuned-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: JoseVilla--cfe_telmex_classification_v1 split: train args: JoseVilla--cfe_telmex_classification_v1 metrics: - name: Accuracy type: accuracy value: 1.0 --- # cfe-telmex-classification-finetuned-v2 This model is a fine-tuned version of [JoseVilla/cfe-telmex-classification-finetuned-v1](https://huggingface.co/JoseVilla/cfe-telmex-classification-finetuned-v1) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1568 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.3749 | 0.7586 | | No log | 2.0 | 4 | 0.1568 | 1.0 | | No log | 3.0 | 6 | 0.0495 | 1.0 | | No log | 4.0 | 8 | 0.0188 | 1.0 | | 0.136 | 5.0 | 10 | 0.0087 | 1.0 | | 0.136 | 6.0 | 12 | 0.0060 | 1.0 | | 0.136 | 7.0 | 14 | 0.0063 | 1.0 | | 0.136 | 8.0 | 16 | 0.0039 | 1.0 | | 0.136 | 9.0 | 18 | 0.0018 | 1.0 | | 0.0129 | 10.0 | 20 | 0.0015 | 1.0 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3