--- base_model: - NousResearch/Nous-Hermes-2-Mistral-7B-DPO - NousResearch/Hermes-2-Pro-Mistral-7B tags: - merge - mergekit - lazymergekit - NousResearch/Nous-Hermes-2-Mistral-7B-DPO - NousResearch/Hermes-2-Pro-Mistral-7B --- # Trismal-Hermand-7B-Base-Ties Trismal-Hermand-7B-Base-Ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: weight: 1 density: 1 - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: weight: 1 density: 1 merge_method: ties base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: weight: 1 density: 1 normalize: true int8_mask: false dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "JoPmt/Trismal-Hermand-7B-Base-Ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```