from transformers import Pipeline import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import tokenizer_from_json from tensorflow.keras.preprocessing.sequence import pad_sequences import json import numpy as np class NewsClassifierPipeline(Pipeline): def __init__(self): super().__init__() self.model = load_model('news_classifier.h5') with open('tokenizer.json') as f: tokenizer_data = json.load(f) self.tokenizer = tokenizer_from_json(tokenizer_data) def preprocess(self, text): sequence = self.tokenizer.texts_to_sequences([text]) padded = pad_sequences(sequence) return padded def _forward(self, texts): processed = self.preprocess(texts) predictions = self.model.predict(processed) scores = tf.nn.softmax(predictions, axis=1) predicted_class = np.argmax(predictions) score = float(np.max(scores)) label = 'foxnews' if predicted_class == 0 else 'nbc' return [{'label': label, 'score': score}] def postprocess(self, model_outputs): return model_outputs