import tensorflow as tf from transformers import PreTrainedModel, TFPreTrainedModel from transformers.modeling_tf_utils import TFSequenceClassificationLoss class TFNewsClassifier(TFPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels # Define your model architecture self.lstm = tf.keras.layers.LSTM(128, return_sequences=True) self.lstm2 = tf.keras.layers.LSTM(64) self.dropout = tf.keras.layers.Dropout(0.5) self.classifier = tf.keras.layers.Dense(self.num_labels, activation='softmax') def call(self, inputs, training=False): x = self.lstm(inputs) x = self.dropout(x, training=training) x = self.lstm2(x) x = self.dropout(x, training=training) return self.classifier(x)