from transformers import Pipeline from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import tokenizer_from_json from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np import tensorflow as tf import json class NewsClassifierPipeline(Pipeline): def __init__(self, model_path="news_classifier.h5", tokenizer_path="tokenizer.json"): super().__init__() self.model = load_model(model_path) with open(tokenizer_path, "r") as f: tokenizer_data = json.load(f) self.tokenizer = tokenizer_from_json(tokenizer_data) def preprocess(self, inputs): sequences = self.tokenizer.texts_to_sequences([inputs]) return pad_sequences(sequences, maxlen=128) def _forward(self, inputs): preprocessed = self.preprocess(inputs) predictions = self.model.predict(preprocessed) scores = tf.nn.softmax(predictions, axis=1).numpy() label = np.argmax(scores) return [{"label": "foxnews" if label == 0 else "nbc", "score": float(scores[0, label])}] def postprocess(self, model_outputs): return model_outputs