--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - generated_from_trainer model-index: - name: zephyr-7b-dpo-lora results: [] --- # zephyr-7b-dpo-lora This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: -0.2038 - Rewards/chosen: -1.1628 - Rewards/rejected: -2.4457 - Rewards/accuracies: 0.6840 - Rewards/margins: 1.2829 - Logps/rejected: -252.9479 - Logps/chosen: -282.7848 - Logits/rejected: -2.9400 - Logits/chosen: -2.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6137 | 1.0 | 968 | 0.6277 | -0.0287 | -0.4191 | 0.7040 | 0.3905 | -232.6823 | -271.4433 | -2.9989 | -3.0154 | | 0.0705 | 2.0 | 1937 | 0.0570 | -0.6708 | -1.6676 | 0.6960 | 0.9968 | -245.1669 | -277.8647 | -2.9609 | -2.9830 | | -0.2602 | 3.0 | 2904 | -0.2038 | -1.1628 | -2.4457 | 0.6840 | 1.2829 | -252.9479 | -282.7848 | -2.9400 | -2.9655 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1