--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.7978339350180506 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: rte split: validation metrics: - name: Accuracy type: accuracy value: 0.7906137184115524 verified: true - name: Precision type: precision value: 0.7552447552447552 verified: true - name: Recall type: recall value: 0.8244274809160306 verified: true - name: AUC type: auc value: 0.8564258078008994 verified: true - name: F1 type: f1 value: 0.7883211678832117 verified: true - name: loss type: loss value: 0.5560466051101685 verified: true --- # roberta-base-rte This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.5446 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7023 | 0.4729 | | No log | 2.0 | 312 | 0.6356 | 0.6895 | | No log | 3.0 | 468 | 0.5177 | 0.7617 | | 0.6131 | 4.0 | 624 | 0.6238 | 0.7473 | | 0.6131 | 5.0 | 780 | 0.5446 | 0.7978 | | 0.6131 | 6.0 | 936 | 0.9697 | 0.7545 | | 0.2528 | 7.0 | 1092 | 1.1004 | 0.7690 | | 0.2528 | 8.0 | 1248 | 1.1937 | 0.7726 | | 0.2528 | 9.0 | 1404 | 1.3313 | 0.7726 | | 0.1073 | 10.0 | 1560 | 1.3534 | 0.7726 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1