--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.9099925797674994 - name: F1 type: f1 value: 0.8788252139455897 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: qqp split: validation metrics: - name: Accuracy type: accuracy value: 0.9099925797674994 verified: true - name: Precision type: precision value: 0.8712531361415555 verified: true - name: Recall type: recall value: 0.8865300638226402 verified: true - name: AUC type: auc value: 0.9690747048570257 verified: true - name: F1 type: f1 value: 0.8788252139455897 verified: true - name: loss type: loss value: 0.28284332156181335 verified: true --- # bert-base-uncased-qqp This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2829 - Accuracy: 0.9100 - F1: 0.8788 - Combined Score: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.2511 | 1.0 | 11371 | 0.2469 | 0.8969 | 0.8641 | 0.8805 | | 0.1763 | 2.0 | 22742 | 0.2379 | 0.9071 | 0.8769 | 0.8920 | | 0.1221 | 3.0 | 34113 | 0.2829 | 0.9100 | 0.8788 | 0.8944 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1