import collections import json import logging import argparse import numpy as np import torch from time import time from torch import optim from tqdm import tqdm from torch.utils.data import DataLoader from datasets import EmbDataset from models.rqvae import RQVAE import os def check_collision(all_indices_str): tot_item = len(all_indices_str) tot_indice = len(set(all_indices_str.tolist())) return tot_item==tot_indice def get_indices_count(all_indices_str): indices_count = collections.defaultdict(int) for index in all_indices_str: indices_count[index] += 1 return indices_count def get_collision_item(all_indices_str): index2id = {} for i, index in enumerate(all_indices_str): if index not in index2id: index2id[index] = [] index2id[index].append(i) collision_item_groups = [] for index in index2id: if len(index2id[index]) > 1: collision_item_groups.append(index2id[index]) return collision_item_groups def parse_args(): parser = argparse.ArgumentParser(description = "Index") parser.add_argument("--ckpt_path", type = str, default = "", help = "") parser.add_argument("--data_path", type = str, default = "", help = "") parser.add_argument("--save_path", type = str, default = "", help = "") parser.add_argument("--device", type = str, default = "cuda:0", help = "gpu or cpu") return parser.parse_args() infer_args = parse_args() print(infer_args) # dataset = "Games" # ckpt_path = "/zhengbowen/rqvae_ckpt/xxxx" # output_dir = f"/zhengbowen/data/{dataset}/" # output_file = f"{dataset}.index.json" # output_file = os.path.join(output_dir,output_file) # device = torch.device("cuda:1") device = torch.device(infer_args.device) ckpt = torch.load(infer_args.ckpt_path, map_location = torch.device('cpu')) args = ckpt["args"] state_dict = ckpt["state_dict"] data = EmbDataset(infer_args.data_path) model = RQVAE(in_dim=data.dim, num_emb_list=args.num_emb_list, e_dim=args.e_dim, layers=args.layers, dropout_prob=args.dropout_prob, bn=args.bn, loss_type=args.loss_type, quant_loss_weight=args.quant_loss_weight, kmeans_init=args.kmeans_init, kmeans_iters=args.kmeans_iters, sk_epsilons=args.sk_epsilons, sk_iters=args.sk_iters, ) model.load_state_dict(state_dict) model = model.to(device) model.eval() print(model) data_loader = DataLoader(data,num_workers=args.num_workers, batch_size=64, shuffle=False, pin_memory=True) all_indices = [] all_indices_str = [] prefix = ["","","","",""] for d in tqdm(data_loader): d = d.to(device) indices = model.get_indices(d,use_sk=False) indices = indices.view(-1, indices.shape[-1]).cpu().numpy() for index in indices: code = [] for i, ind in enumerate(index): code.append(prefix[i].format(int(ind))) all_indices.append(code) all_indices_str.append(str(code)) # break all_indices = np.array(all_indices) all_indices_str = np.array(all_indices_str) for vq in model.rq.vq_layers[:-1]: vq.sk_epsilon=0.0 if model.rq.vq_layers[-1].sk_epsilon == 0.0: model.rq.vq_layers[-1].sk_epsilon = 0.003 tt = 0 #There are often duplicate items in the dataset, and we no longer differentiate them while True: if tt >= 10 or check_collision(all_indices_str): break collision_item_groups = get_collision_item(all_indices_str) # print(collision_item_groups) print(len(collision_item_groups)) for collision_items in collision_item_groups: d = data[collision_items].to(device) indices = model.get_indices(d, use_sk=True) indices = indices.view(-1, indices.shape[-1]).cpu().numpy() for item, index in zip(collision_items, indices): code = [] for i, ind in enumerate(index): code.append(prefix[i].format(int(ind))) all_indices[item] = code all_indices_str[item] = str(code) tt += 1 print("All indices number: ",len(all_indices)) print("Max number of conflicts: ", max(get_indices_count(all_indices_str).values())) tot_item = len(all_indices_str) tot_indice = len(set(all_indices_str.tolist())) print("Collision Rate",(tot_item-tot_indice)/tot_item) all_indices_dict = {} for item, indices in enumerate(all_indices.tolist()): all_indices_dict[item] = list(indices) with open(infer_args.save_path, 'w') as fp: json.dump(all_indices_dict, fp)