--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.917 - name: F1 type: f1 value: 0.9174569814008752 --- # bert-base-uncased-finetuned-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2242 - Accuracy: 0.917 - F1: 0.9175 ## Model description Label-0 = sadness Label-1 = joy Label-2 = love Label-3 = anger Label-4 = fear Label-5 = surprise ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3240 | 0.8945 | 0.8928 | | No log | 2.0 | 500 | 0.2242 | 0.917 | 0.9175 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.13.3