--- license: mit --- ## Model Summary Video-CCAM-4B is a lightweight Video-MLLM built on [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [SigLIP SO400M](https://huggingface.co/google/siglip-so400m-patch14-384). **Note**: Here [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) refers to the previous version, which requires `git commit id ff07dc01615f8113924aed013115ab2abd32115b` to get the checkpoint. ## Usage Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10: ``` torch==2.1.0 torchvision==0.16.0 transformers==4.40.2 peft==0.10.0 ``` ## Inference & Evaluation Please refer to [Video-CCAM](https://github.com/QQ-MM/Video-CCAM) on inference and evaluation. ### Video-MME |#Frames.|32|96| |:-:|:-:|:-:| |w/o subs|48.2|49.6| |w subs|51.7|53.0| ### MVBench: 57.78 (16 frames) ## Acknowledgement * [xtuner](https://github.com/InternLM/xtuner): Video-CCAM-4B is trained using the xtuner framework. Thanks for their excellent works! * [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct): Powerful language models developed by Microsoft. * [SigLIP SO400M](https://huggingface.co/google/siglip-so400m-patch14-384): Outstanding vision encoder developed by Google. ## License The model is licensed under the MIT license.