--- language: - de license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-fine-tuned-de_arga results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: de split: validation[2000:4000] args: 'config: german, split: test' metrics: - name: Wer type: wer value: 13.547131036720566 --- # whisper-fine-tuned-de_arga This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3381 - Wer: 13.5471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1278 | 1.6 | 1000 | 0.2690 | 13.9852 | | 0.0155 | 3.2 | 2000 | 0.3036 | 13.5417 | | 0.0035 | 4.8 | 3000 | 0.3180 | 13.4985 | | 0.0012 | 6.4 | 4000 | 0.3335 | 13.5634 | | 0.001 | 8.0 | 5000 | 0.3381 | 13.5471 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2