--- language: - en metrics: - accuracy pipeline_tag: image-classification tags: - computer vision - flower - image classification - resnet50 --- # flower_image_classification_ResNet50_v1.0 This model is a fine-tuned version of Keras ResNet50 on the tf_flower dataset (https://www.tensorflow.org/datasets/catalog/tf_flowers). It achieves the following results on the evaluation set: - Loss: 0.7941 - Accuracy: 0.8571 ## Model description A slightly customized image classification model for classify 5 labels of flowers ('daisy', 'dandelion', 'roses', 'sunflowers', 'tulips') ## Intended uses & limitations This model is fined tune solely for flower image classification. ## Training and evaluation data Training and testing data is splitted into 80:20 portion. Total data : 3670 files belonging to 5 classes Training data : 2753 files (80%) Validation data : 917 files (20%) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-03 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam - loss: categorical_crossentropy - num_epochs: 5 ### Fine-Tuning Results | Epoch | Step | Training Loss | Training Accuracy | Validation Loss | Validation Accuracy| |:-----:|:-----:|:---------------:|:-----------------:|:---------------:|:------------------:| | 1.0 | 345 | 13.9143 | 0.6478 | 0.5310 | 0.8288 | | 2.0 | 690 | 0.2639 | 0.9161 | 0.6046 | 0.8419 | | 3.0 | 1035 | 0.1369 | 0.9539 | 0.5483 | 0.8561 | | 4.0 | 1380 | 0.0863 | 0.9703 | 0.5699 | 0.8659 | | 5.0 | 1725 | 0.0686 | 0.9837 | 0.7941 | 0.8571 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0 - opencv-contrib-python-4.10.0.82