--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - hf-internal-testing/librispeech_asr_dummy metrics: - wer model-index: - name: wft-test-model results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: hf-internal-testing/librispeech_asr_dummy type: hf-internal-testing/librispeech_asr_dummy metrics: - type: wer value: 4.724409448818897 name: Wer --- # wft-test-model This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set: - Loss: 0.1248 - Wer: 4.7244 - Cer: 92.6847 - Decode Time: 0.5481 - Wer Time: 0.0069 - Cer Time: 0.0040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Time | Wer Time | Cer Time | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:--------:|:--------:| | 2.4107 | 0.1 | 10 | 1.9892 | 303.5433 | 117.1875 | 0.5449 | 0.0307 | 0.0039 | | 1.2109 | 1.01 | 20 | 1.1659 | 155.1181 | 91.2642 | 0.5278 | 0.0062 | 0.0036 | | 0.8855 | 1.11 | 30 | 0.8104 | 30.7087 | 56.8182 | 0.4832 | 0.0069 | 0.0041 | | 0.4367 | 2.02 | 40 | 0.6315 | 25.1969 | 74.5739 | 0.5295 | 0.0058 | 0.0034 | | 0.4398 | 2.12 | 50 | 0.4566 | 17.3228 | 91.9744 | 0.6078 | 0.0055 | 0.0030 | | 0.2291 | 3.03 | 60 | 0.3006 | 9.0551 | 100.7102 | 0.5659 | 0.0058 | 0.0031 | | 0.2281 | 3.13 | 70 | 0.2144 | 7.4803 | 90.4830 | 0.5507 | 0.0046 | 0.0030 | | 0.111 | 4.04 | 80 | 0.1736 | 5.9055 | 89.3466 | 0.6595 | 0.0063 | 0.0032 | | 0.0695 | 4.14 | 90 | 0.1345 | 4.7244 | 87.9261 | 0.6369 | 0.0402 | 0.0182 | | 0.0761 | 5.05 | 100 | 0.1248 | 4.7244 | 92.6847 | 0.5481 | 0.0069 | 0.0040 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.5.0 - Datasets 3.0.2 - Tokenizers 0.20.1