--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - hf-internal-testing/librispeech_asr_dummy metrics: - wer model-index: - name: wft-test-model results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: hf-internal-testing/librispeech_asr_dummy type: hf-internal-testing/librispeech_asr_dummy metrics: - type: wer value: 4.724409448818897 name: Wer --- # wft-test-model This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set: - Loss: 0.1218 - Wer: 4.7244 - Cer: 100.7102 - Decode Time: 0.5595 - Wer Time: 0.0060 - Cer Time: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Time | Wer Time | Cer Time | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:--------:|:--------:| | 2.4038 | 0.1 | 10 | 1.9871 | 299.6063 | 116.5483 | 0.5542 | 0.0112 | 0.0038 | | 1.2202 | 1.01 | 20 | 1.1610 | 172.0472 | 91.6903 | 0.5178 | 0.0055 | 0.0028 | | 0.8765 | 1.11 | 30 | 0.8079 | 31.8898 | 56.1080 | 0.4854 | 0.0051 | 0.0024 | | 0.4415 | 2.02 | 40 | 0.6279 | 25.9843 | 82.5284 | 0.5218 | 0.0060 | 0.0028 | | 0.4307 | 2.12 | 50 | 0.4509 | 16.9291 | 98.2955 | 0.5377 | 0.0056 | 0.0030 | | 0.2363 | 3.03 | 60 | 0.2952 | 9.4488 | 102.9119 | 0.5310 | 0.0048 | 0.0027 | | 0.2245 | 3.13 | 70 | 0.2046 | 7.4803 | 96.3778 | 0.5429 | 0.0056 | 0.0029 | | 0.1053 | 4.04 | 80 | 0.1700 | 5.5118 | 96.4489 | 0.5306 | 0.0067 | 0.0028 | | 0.0731 | 4.14 | 90 | 0.1320 | 4.7244 | 97.1591 | 0.5509 | 0.0050 | 0.0026 | | 0.0782 | 5.05 | 100 | 0.1218 | 4.7244 | 100.7102 | 0.5595 | 0.0060 | 0.0027 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.5.0 - Datasets 3.0.2 - Tokenizers 0.20.1