# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """openai model configuration""" from transformers.configuration_utils import PretrainedConfig, layer_type_validation from transformers.modeling_rope_utils import rope_config_validation class GptOssConfig(PretrainedConfig): r""" This will yield a configuration to that of the BERT [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture. """ model_type = "gpt_oss" base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.self_attn.sinks": "local_rowwise", "layers.*.mlp.experts": "gather", "layers.*.mlp.router": "ep_router", "layers.*.mlp.experts.gate_up_proj": "grouped_gemm", "layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm", "layers.*.mlp.experts.down_proj": "grouped_gemm", "layers.*.mlp.experts.down_proj_bias": "grouped_gemm", } def __init__( self, num_hidden_layers: int = 36, num_local_experts: int = 128, vocab_size: int = 201088, hidden_size: int = 2880, intermediate_size: int = 2880, head_dim: int = 64, num_attention_heads: int = 64, num_key_value_heads: int = 8, sliding_window: int = 128, rope_theta: float = 150000.0, tie_word_embeddings=False, hidden_act: str = "silu", initializer_range: float = 0.02, max_position_embeddings=131072, rms_norm_eps: float = 1e-5, rope_scaling={ "rope_type": "yarn", "factor": 32.0, "beta_fast": 32.0, "beta_slow": 1.0, "truncate": False, "original_max_position_embeddings": 4096, }, attention_dropout: float = 0.0, num_experts_per_tok=4, router_aux_loss_coef: float = 0.9, output_router_logits=False, use_cache=True, layer_types=None, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_local_experts = num_local_experts self.sliding_window = sliding_window self.num_experts_per_tok = num_experts_per_tok # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads self.layer_types = layer_types if self.layer_types is None: self.layer_types = [ "sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types) self.attention_bias = True self.max_position_embeddings = max_position_embeddings self.router_aux_loss_coef = router_aux_loss_coef self.output_router_logits = output_router_logits self.use_cache = use_cache # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, copy it it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["GptOssConfig"]