from transformers import AutoModelForSequenceClassification,AutoTokenizer #import tensorflow as tf #print(tf.__version__) # replace "path/to/model/directory" with the path to the directory containing the model files tokenizer = AutoTokenizer.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis") model = AutoModelForSequenceClassification.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis") def predict_sentiment(text): # Tokenize input text inputs = tokenizer(text, return_tensors="pt") # Pass the tokenized inputs through the model outputs = model(**inputs) # Get predicted sentiment predictions = outputs.logits.argmax(dim=1) sentiment = "Negative" if predictions.item() == 1 else "Positive" return sentiment