{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6800152ae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652459484.621738, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0NZz46LIg+qmshviOEcb7AvRS8TZcBPQAAAAAAAAAA2muUvgVu2TzTZmM+cixIvuv98jxHLSO6AAAAAAAAAACm8ow9tBiDP55b0DwnnNm+VqH0PLsysDsAAAAAAAAAAADAs7yuTZa6/f7JO5CC7zf7uqS6hsdjNgAAgD8AAIA/E2GQPjT/J71N1OU4somNt6uekb65ZBu4AACAPwAAgD8NT4m9jx5PuqBOUjyBVHm2AN86OptacrUAAIA/AACAPxrVm71I/4G6F5SftQSE2bAQnJs6V1OrNAAAgD8AAIA/wKDnveyZ47mY8G83urgQtCVIt7p+4Iu2AACAPwAAgD+t5DC+dmFSvG4XQzuGK885+JK5PYBPj7oAAIA/AACAP9AFfb6b36c9ijy+PRHpDb4zkiu8QLKePAAAAAAAAAAAZh+CPr1fWzwOTzK6hV1cuHtd7D1T9lQ5AACAPwAAgD+AkLM9j54UuuhyYrn+gEY2MMuNuf9qgzgAAIA/AACAPxo8Q7321De6Ox83tdqJALFK94U6zbhVNAAAgD8AAIA/oNcivtSbCT+M9Qs9fSeCvrCrhb1G6SM7AAAAAAAAAADNAx09FDiEutyQjbkzu4K0xqs8uy/xpDgAAIA/AACAP81XLb5pMmK8rtp2OjRTiThKA889Y3qeuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB3x+GKFZZECUhpRSlIwBbJRN6AOMAXSUR0CXtTBFuvU0dX2UKGgGaAloD0MIPsvz4O68EcCUhpRSlGgVTSoBaBZHQJe1RuqFRHh1fZQoaAZoCWgPQwhHPq946rdhQJSGlFKUaBVN6ANoFkdAl7dKBZpztHV9lChoBmgJaA9DCBssnKT50WBAlIaUUpRoFU3oA2gWR0CXvisHjZL7dX2UKGgGaAloD0MIMLq8OdyLYkCUhpRSlGgVTegDaBZHQJe+ygctGut1fZQoaAZoCWgPQwjt8UI6PK5hQJSGlFKUaBVN6ANoFkdAl8EyBshxHXV9lChoBmgJaA9DCMyaWOAr+1hAlIaUUpRoFU3oA2gWR0CXxqsIVuaXdX2UKGgGaAloD0MIAK5kx8ZdYUCUhpRSlGgVTegDaBZHQJfShtqHoHN1fZQoaAZoCWgPQwgNGCR92s9vQJSGlFKUaBVNjQFoFkdAl9Yaab4Ju3V9lChoBmgJaA9DCLwC0ZMyf2VAlIaUUpRoFU3oA2gWR0CX1oTQE6kqdX2UKGgGaAloD0MIUiy3tBrTYkCUhpRSlGgVTegDaBZHQJffQju8brF1fZQoaAZoCWgPQwjJrUm3pY5hQJSGlFKUaBVN6ANoFkdAl+K8ejmCAnV9lChoBmgJaA9DCIfAkUADK2FAlIaUUpRoFU3oA2gWR0CX43uMMqjKdX2UKGgGaAloD0MIcHoX70eXZUCUhpRSlGgVTegDaBZHQJfldwxWT5h1fZQoaAZoCWgPQwgZjXxeccFhQJSGlFKUaBVN6ANoFkdAl+XvnOjZc3V9lChoBmgJaA9DCOW1ErrLt2RAlIaUUpRoFU3oA2gWR0CX6biDdxhldX2UKGgGaAloD0MIC0eQSrE6W0CUhpRSlGgVTegDaBZHQJfp2PRzBAR1fZQoaAZoCWgPQwhHcvkP6XRjQJSGlFKUaBVN6ANoFkdAl+4yZOSGJ3V9lChoBmgJaA9DCIqRJXMsPWFAlIaUUpRoFU3oA2gWR0CX7knKGL1mdX2UKGgGaAloD0MIvYxiuaUwYUCUhpRSlGgVTegDaBZHQJfwSpxWDHx1fZQoaAZoCWgPQwjz/6ojR25YQJSGlFKUaBVN6ANoFkdAl/fFjI7vHHV9lChoBmgJaA9DCIfhI2JKLWxAlIaUUpRoFU2EAWgWR0CYVxRHPNVzdX2UKGgGaAloD0MIVtY2xeMmYUCUhpRSlGgVTegDaBZHQJhXPY287IV1fZQoaAZoCWgPQwj/WfPjrxFsQJSGlFKUaBVNIAJoFkdAmFmFoDgZTHV9lChoBmgJaA9DCEsi+yDL4izAlIaUUpRoFU0OAWgWR0CYWiJemelLdX2UKGgGaAloD0MIDHTtC2gdYUCUhpRSlGgVTegDaBZHQJhcfWUbDMx1fZQoaAZoCWgPQwgZ/z7jwtZbQJSGlFKUaBVN6ANoFkdAmGc5dGAkLXV9lChoBmgJaA9DCCrKpfGL4GJAlIaUUpRoFU3oA2gWR0CYaqf/WDpUdX2UKGgGaAloD0MIEi7kEVwZYUCUhpRSlGgVTegDaBZHQJhrD6ab4Jx1fZQoaAZoCWgPQwgKhnMNs2psQJSGlFKUaBVNsgNoFkdAmHPDV2A5JnV9lChoBmgJaA9DCMV29wDddzRAlIaUUpRoFUvqaBZHQJh0j5IpYtB1fZQoaAZoCWgPQwiIE5hO6+5kQJSGlFKUaBVN6ANoFkdAmHdQrDqGDnV9lChoBmgJaA9DCHsVGR2QP25AlIaUUpRoFU05A2gWR0CYeQF1jiGWdX2UKGgGaAloD0MIopqSrEOgYECUhpRSlGgVTegDaBZHQJh5n4bjtHB1fZQoaAZoCWgPQwjnNXaJ6gNuQJSGlFKUaBVN5gNoFkdAmHzxysCDEnV9lChoBmgJaA9DCHWPbK6aG1tAlIaUUpRoFU3oA2gWR0CYfR9fCyhSdX2UKGgGaAloD0MIVYSbjCq7JsCUhpRSlGgVS7poFkdAmIICx3V093V9lChoBmgJaA9DCAkZyLNLbmFAlIaUUpRoFU3oA2gWR0CYgt4KhL5AdX2UKGgGaAloD0MIER0CRwIFOECUhpRSlGgVS+9oFkdAmIPMF2V3U3V9lChoBmgJaA9DCGpOXmSCymJAlIaUUpRoFU3oA2gWR0CYiQDzyz5XdX2UKGgGaAloD0MI1sdD3901XkCUhpRSlGgVTegDaBZHQJiK9Wq94/x1fZQoaAZoCWgPQwhnYU87fDJlQJSGlFKUaBVN6ANoFkdAmIsTHS4OMHV9lChoBmgJaA9DCNTwLayb72NAlIaUUpRoFU3oA2gWR0CYjPERaouPdX2UKGgGaAloD0MIJ4kl5e4nYUCUhpRSlGgVTegDaBZHQJiNeAskIHF1fZQoaAZoCWgPQwjuk6MA0ZBjQJSGlFKUaBVN6ANoFkdAmI9zundfs3V9lChoBmgJaA9DCOGyCpsBwGxAlIaUUpRoFU03AmgWR0CYkW32mHgxdX2UKGgGaAloD0MIqmBUUqdXZUCUhpRSlGgVTegDaBZHQJibrZ6D5CZ1fZQoaAZoCWgPQwhs6dFUz7JvQJSGlFKUaBVNHAJoFkdAmJvMlHBk7XV9lChoBmgJaA9DCOp7DcFxnWVAlIaUUpRoFU3oA2gWR0CYnA8n/kvLdX2UKGgGaAloD0MIoWXdPxaWbkCUhpRSlGgVTWYBaBZHQJifQH5aePJ1fZQoaAZoCWgPQwgcYVERp59iQJSGlFKUaBVN6ANoFkdAmKRFqzqrzXV9lChoBmgJaA9DCIV7Zd4qhGNAlIaUUpRoFU3oA2gWR0CYpRIn0CiidX2UKGgGaAloD0MIhPBo44i1O0CUhpRSlGgVS/9oFkdAmKy9X5nDi3V9lChoBmgJaA9DCMoZijveGWNAlIaUUpRoFU3oA2gWR0CYriMlTm4idX2UKGgGaAloD0MII2dhTzsFY0CUhpRSlGgVTegDaBZHQJiuXE61b7l1fZQoaAZoCWgPQwiAuoEC785vQJSGlFKUaBVNegFoFkdAmK/IhMajvnV9lChoBmgJaA9DCMLdWbvt3WhAlIaUUpRoFU3sAmgWR0CYszcWTHKfdX2UKGgGaAloD0MI7lutExfyY0CUhpRSlGgVTegDaBZHQJi08fV7QcB1fZQoaAZoCWgPQwhLPnYXqLVgQJSGlFKUaBVN6ANoFkdAmLX80UGmk3V9lChoBmgJaA9DCMbDew4sSmJAlIaUUpRoFU3oA2gWR0CYu3mD15B1dX2UKGgGaAloD0MIgsR294BlYUCUhpRSlGgVTegDaBZHQJi9t35eqrB1fZQoaAZoCWgPQwi9jGK5pSVkQJSGlFKUaBVN6ANoFkdAmL3ZR8+ianV9lChoBmgJaA9DCL7aUZwjtmRAlIaUUpRoFU3oA2gWR0CZH8fkmx+sdX2UKGgGaAloD0MI1PAtrBtNYECUhpRSlGgVTegDaBZHQJkiVdmg8KZ1fZQoaAZoCWgPQwi4zr9ddsdvQJSGlFKUaBVNSgNoFkdAmSWLor4FinV9lChoBmgJaA9DCA+aXffWo2VAlIaUUpRoFU3oA2gWR0CZLisHSncddX2UKGgGaAloD0MICyk/qfZKcECUhpRSlGgVTUUCaBZHQJkvlzq8lHB1fZQoaAZoCWgPQwgfniXIiLJsQJSGlFKUaBVNVwFoFkdAmTNU0aZQYXV9lChoBmgJaA9DCH+IDRbOCXBAlIaUUpRoFU3DAWgWR0CZNAL2YfGNdX2UKGgGaAloD0MIETRmEvURYUCUhpRSlGgVTegDaBZHQJk2p9XtBv91fZQoaAZoCWgPQwgF3V7SGBNgQJSGlFKUaBVN6ANoFkdAmTdhz/6wdXV9lChoBmgJaA9DCPBt+rMfG0RAlIaUUpRoFUvwaBZHQJk6MiSq2jR1fZQoaAZoCWgPQwgjhEcbR+lfQJSGlFKUaBVN6ANoFkdAmT3MtGus93V9lChoBmgJaA9DCPpeQ3BcsWNAlIaUUpRoFU3oA2gWR0CZPvXVbzK+dX2UKGgGaAloD0MIE2ba/pVbX0CUhpRSlGgVTegDaBZHQJk/JefI0ZZ1fZQoaAZoCWgPQwjl7QinhX1hQJSGlFKUaBVN6ANoFkdAmUBi9mHxjXV9lChoBmgJaA9DCCMxQQ3fSl1AlIaUUpRoFU3oA2gWR0CZRam0E5hjdX2UKGgGaAloD0MIjSWsjbHOXkCUhpRSlGgVTegDaBZHQJlGtj8UEgZ1fZQoaAZoCWgPQwigFRiyuqtGQJSGlFKUaBVL0mgWR0CZSDy7PIGRdX2UKGgGaAloD0MIKLnDJjJOZECUhpRSlGgVTegDaBZHQJlMa1Vo6CF1fZQoaAZoCWgPQwiNCpxsA+9dQJSGlFKUaBVN6ANoFkdAmU6No8IRiHV9lChoBmgJaA9DCKM7iJ1pTHBAlIaUUpRoFU0/AmgWR0CZUABRQ79ydX2UKGgGaAloD0MIYfvJGB/YYkCUhpRSlGgVTegDaBZHQJlV9QDV6NV1fZQoaAZoCWgPQwic/BadLJpuQJSGlFKUaBVNIANoFkdAmVec3uNPxnV9lChoBmgJaA9DCO4KfbAM6WBAlIaUUpRoFU3oA2gWR0CZWMtpEhJRdX2UKGgGaAloD0MIAJATJoyGKcCUhpRSlGgVS7JoFkdAmVlse8wpOXV9lChoBmgJaA9DCP+z5sdfC3BAlIaUUpRoFU0oAmgWR0CZXNPHDJlrdX2UKGgGaAloD0MINSVZh+OpcECUhpRSlGgVTXkCaBZHQJlfeRkmQbN1fZQoaAZoCWgPQwgZ5C7CFIkyQJSGlFKUaBVL52gWR0CZZQsMiKR/dX2UKGgGaAloD0MI3h6EgHx5XUCUhpRSlGgVTegDaBZHQJllNGOMl1N1fZQoaAZoCWgPQwim7V9ZadNhQJSGlFKUaBVN6ANoFkdAmWiaGDcuanV9lChoBmgJaA9DCDyiQnXzn2BAlIaUUpRoFU3oA2gWR0CZaVR2KVIJdX2UKGgGaAloD0MIxJRIoheHY0CUhpRSlGgVTegDaBZHQJlsXlq8Djl1fZQoaAZoCWgPQwj0xHO2gPVcQJSGlFKUaBVN6ANoFkdAmXF6KxcE/3V9lChoBmgJaA9DCBnKiXaVPWxAlIaUUpRoFU2wAWgWR0CZcj1s+FDfdX2UKGgGaAloD0MI2SJpN/rxYUCUhpRSlGgVTegDaBZHQJl4Em+j/Mp1fZQoaAZoCWgPQwiVKlH2lolmQJSGlFKUaBVN6ANoFkdAmXkqx1PnCHV9lChoBmgJaA9DCMRdvYqMkl9AlIaUUpRoFU3oA2gWR0CZeqyzXz19dX2UKGgGaAloD0MIrTWU2ouAYUCUhpRSlGgVTegDaBZHQJl+resPrfN1fZQoaAZoCWgPQwhv1XWophlkQJSGlFKUaBVN6ANoFkdAmYDNv0h/zHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}